• Ujong, U. P. Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Cross River State, P.M.B. 1123, Calabar, Cross River State, Nigeria
  • Nkanu, E. E. Department of Human Physiology, Faculty of Basic Medical Sciences, University of Cross River State, P.M.B. 1123, Calabar, Cross River State, Nigeria
Keywords: Inflammation, Apoptosis, Oxidative stress, Liver, Streptozotocin


Background: The onset of diabetes is associated with the development of biochemical and functional abnormalities, including oxidative stress and apoptosis in the liver. Telfairia occidentalis (TO) is a popular plant and food item reported to have high of antioxidant, anti-inflammatory, immunomodulatory and hypoglycemic properties. The present study investigated the potential antihepatotoxic properties of T. occidentalis in animal model of diabetes- induced liver damage.


Thirty-five rats were assigned into five groups of Seven (7) animals each.  Group 1 (Normal control) received 0.5ml distilled water for 28 days, Group 2 (Diabetic control) received 10% fructose (w/v) for 14 days prior to single intra-peritoneal injection of 40mg/kg body weight streptozotocin (STZ), Group 3 (TO1 group), received 10% fructose (w/v) for 14 days prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed by treatment with 200mg/kg body weight TO for 28 days, Group 4 (TO2 group) received 10% fructose (w/v)  for 14 days prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed by treatment with 300mg/kg body weight TO for 28 days, while Group 5 (MET group) received 10% fructose (w/v)  for 14 days prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed by treatment with 300mg/kg body weight Metformin for 28 days.


Results: Treatment with TO at 200mg/kg and 300mg/kg significantly (p<0.05) augmented the activities of superoxide dismutase, catalase an glutathione peroxidase as well as reduced glutathione level with a concomitant decrease in malondialdehyde level in the liver of diabetic rats. Also, Inflammatory biomarkers namely TNF-α, IL-1β, NO and iNOS levels along with MPO and COX-2 activities were significantly decreased in the liver of diabetic rats when treated with T. occidentalis (200mg/kg and 300mg/kg). Furthermore, the activity of caspase-3 was markedly reduced in the liver of diabetic rats when treated with T. occidentalis (200mg/kg and 300mg/kg).

Conclusion: Telfairia occidentalis attenuated oxidative stress, inflammation and activation of caspase-3 in the liver of streptozotocin-induced diabetic rats via antioxidant and anti-inflammatory mechanisms.


Download data is not yet available.


Liang T, Zhang Q, Sun W, Xin Y, Zhang Z, Tan Y, Zhou S, Zhang C, Cai L, Lu X, Cheng M. Zinc treatment prevents type 1 diabetes-induced hepatic oxidative damage, endoplasmic reticulum stress, and cell death, and even prevents possible steatohepatitis in the OVE26 mouse model: Important role of metallothionein, Toxicol. Lett. 2015; 233(2): 114–124.

Bell DS, Allbright E. The multifaceted associations of hepatobiliary disease and diabetes. Endocr. Pract. 2007; 13: 300-312.

Tolman KG, Fonseca V, Tan MH, Dalpiaz A. Narrative review: hepatobiliary disease in type 2 diabetes mellitus. Ann. Intern. Med. 2004; 141: 946-956.

Guven A, Yavuz O, Cam M, Ercan F, Bukan N, Comunoglu C, Gokce F. Effects of melatonin on streptozotocin-induced diabetic liver injury in rats. Acta Histochem. 2006; 108: 85-93.

Harrison SA. Liver disease in patients with diabetes mellitus. J. Clin. Gastroenterol. 2006; 40: 68–76.

Wang W, Wang C, Ding XQ, Pan Y, Gu TT, Wang MX, Liu YL, Wang FM, Wang SJ, Kong LD. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats, Br. J. Pharmacol. 2013; 169: 1352–1371

Palsamy P, Sivakumar S, Subramanian S. Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats, Chem. Biol. Interact. 2010; 186: 200–210.

Ingaramo PI, Ronco MT, Francés DE, Monti JA, Pisani GB, Ceballos MP, Galleano M, Carrillo MC, Carnovale CE. Tumor necrosis factor alpha pathways develops liver apoptosis in type 1 diabetes mellitus. Mol. Immunol. 2011; 48: 1397–1407.

Afrin R, Arumugam S, Wahed MI, Pitchaimani V, Karuppagounder V, Sreedhar R, Harima M., Suzuki H, Miyashita S, Nakamura T, Suzuki K, Nakamura M, Ueno K, Watanabe K. Attenuation of endoplasmic reticulum stress-mediated liver damage by mulberry leaf diet in streptozotocin-induced diabetic rats. Am. J. Chin. Med. 2016; 44: 87–101.

Madar Z, Kalet-Litman S, Stark AH. Inducible nitric oxide synthase activity and expression in liver and hepatocytes of diabetic rats, Pharmacology 2005; 73: 106–112.

Taurino F, Stanca E, Vonghia L, Siculella L, Sardanelli AM, Papa S, Zanotti F, Gnoni A. Short-term Type-1 diabetes differentially modulates 14-3-3 proteins in rat brain and liver, Eur. J. Clin. Invest. 2014; 44: 350–358.

Murunga AN, Miruka DO, Driver C, Nkomo F, Cobongela SZ, Owira PM. Grapefruit derived flavonoid naringin improves ketoacidosis and lipid peroxidation in type 1 diabetes rat model. PLoS One. 2016; 11: e0153241.

Penczynski KJ, Herder C, Krupp D, Rienks J, Egert S, Wudy SA, Roden M, Remer T, Buyken AE. Flavonoid intake from fruit and vegetables during adolescence is prospectively associated with a favourable risk factor profile for type 2 diabetes in early adulthood. Eur. J. Nutr. 2018; s00394-018-1631-3.

Adisa WA, Okhiai O, Bankole JK, Iyamu OA, Aigbe O. Testicular damage in Telfairia occidentalis extract-treated Wistar rats. American Journal of Medical and Biological Research, 2014; 2: 37–45.

Akoroda MO. Ethnobotany of Telfairia occidentalis (Cucurbitaceae) among Igbos of Nigeria. Economic Botany, 1990; 44: 29–39.

Aghaei S, Nikzad H, Taghizadeh M, Tameh AA, Taherian A, Moravveji A. Protective effect of Pumpkin seed extract on sperm characteristics, biochemical parameters and epididymal histology in adult male rats treated with Cyclophosphamide. Andrologia, 2013; 46: 927– 935.

Osukoya OA, Adegbenro D, Onasanya A. Antinociceptive and antioxidant activities of the methanolic extract of Telfairia occidentalis seeds. Ancient Science of Life, 2016; 36: 98–103. https://doi. org/10.4103/asl.ASL_142_16

Eseyin OA, Sattar MA, Rathore HA. Review of the pharmacological activity of Telfairia occidentalis. Trop J Pharm Res. 2014; 13: 1761–1769.

Saalu LC, Kpela T, Benebo AS, Oyewopo AO, Anifowope EO, Oguntola JA. The dose-dependent testiculoprotective and testiculotoxic potentials of Telfairia occidentalis Hook f. Leaves extract in rat. International Journal of Applied Research in Natural Products, 2010; 3: 27–38.

Nwidu LL, Oboma YI. Telfairia occidentalis (Cucurbitaceae) pulp extract mitigates rifampicin-isoniazid-induced hepatotoxicity in an in vivo rat model of oxidative stress. Journal of Integrative Medicine, 2018;

Oladele JO, Anyim JC, Oyeleke OM, Olowookere BD, Bamigboye MO, Mutiat, Oladele OT, Oladiji AT. Telfairia occidentalis mitigates dextran sodium sulfate-induced ulcerative colitis in rats via suppression of oxidative stress, lipid peroxidation, and inflammation. J Food Biochem. 2021; 00:e13873.

Clairborne A. Catalase activity. In: Greewald AR (ed.) Handbook of methods for oxygenradical research. Boca Raton, FL: CRC Press: 1995, pp. 237-242.

Wolff SP. Ferrous ion oxidation in the presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994; 233: 182–189.

Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Sci. 1973; 179: 588-590.

Misra HP, Fridovich I. The role of superoxide anion in the autooxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972; 247: 3170-3175.

Granell S, Gironella M, Bulbena O, Panés J, Mauri M, Aparisi L, Sabater L, Gelpí E, Closa D. Heparin mobilizes xanthine oxidase and induces lung inflammation in acute pancreatitis, Crit. Care. Med. 2003; 31: 525-530.

Farombi EO, Tahnteng JG, Agboola AO, Nwankwo JO, Emerole GO. Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron–a Garcinia kola seed extract. Food and Chemical Toxicology. 2000; 38:535–541.

Green LC, Wagner DA, Glogowski J, Skiper PL, Wishnock JS, Tannenbaum SR. Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal.Biochem. 1982; 126: 131–138.

Veijola R, Koskinen M, Helminen O, Hekkala A. Dysregulation of glucose metabolism in preclinical type 1 diabetes. Pediatr Diabetes. 2016 Jul;17 Suppl 22:25-30. doi: 10.1111/pedi.12392. PMID: 27411433.

Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes. 2015 May 15;6(4):598-612. doi: 10.4239/wjd.v6.i4.598. PMID: 25987957; PMCID: PMC4434080.

Zhang P, Li T, Wu X, Nice EC, Huang C, Zhang Y. Oxidative stress and diabetes: antioxidative strategies. Front Med. 2020 Oct;14(5):583-600. doi: 10.1007/s11684-019-0729-1. Epub 2020 Apr 4. PMID: 32248333.

Forman HJ, Zhang H, Rinna A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12. doi: 10.1016/j.mam.2008.08.006. Epub 2008 Aug 30. PMID: 18796312; PMCID: PMC2696075.

Davì G, Falco A, Patrono C. Lipid peroxidation in diabetes mellitus. Antioxid Redox Signal. 2005 Jan-Feb;7(1-2):256-68. doi: 10.1089/ars.2005.7.256. PMID: 15650413.

Gwarzo MY, Ahmadu JH, Ahmad MB, Dikko AU. Serum glucose and malondialdehyde levels in alloxan induced diabetic rats supplemented with methanolic extract of tacazzea apiculata. Int J Biomed Sci. 2014 Dec;10(4):236-42. PMID: 25598753; PMCID: PMC4289696.

Ghanbari E, Nejati V, Khazaei M. Improvement in Serum Biochemical Alterations and Oxidative Stress of Liver and Pancreas following Use of Royal Jelly in Streptozotocin-Induced Diabetic Rats. Cell J. 2016 Fall;18(3):362-70. doi: 10.22074/cellj.2016.4564. Epub 2016 Aug 24. PMID: 27602318; PMCID: PMC5011324.

Traverso N, Menini S, Cosso L, Odetti P, Albano E, Pronzato MA, Marinari UM. Immunological evidence for increased oxidative stress in diabetic rats. Diabetologia. 1998 Mar;41(3):265-70. doi: 10.1007/s001250050902. PMID: 9541165.

Shrilatha B; Muralidhara. Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat. Int J Androl. 2007 Dec;30(6):508-18. doi: 10.1111/j.1365-2605.2007.00748.x. Epub 2007 Jun 15. PMID: 17573857

Lucchesi AN, Freitas NT, Cassettari LL, Marques SF, Spadella CT. Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir Bras. 2013 Jul;28(7):502-8. doi: 10.1590/s0102-86502013000700005. PMID: 23842931.

Maedler K, Dharmadhikari G, Schumann DM, Størling J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther. 2009 Sep;9(9):1177-88. doi: 10.1517/14712590903136688. PMID: 19604125.

Ghabril M, Bonkovsky HL, Kum C, Davern T, Hayashi PH, Kleiner DE, Serrano J, Rochon J, Fontana RJ, Bonacini M; US Drug-Induced Liver Injury Network. Liver injury from tumor necrosis factor-α antagonists: analysis of thirty-four cases. Clin Gastroenterol Hepatol. 2013 May;11(5):558-564.e3. doi: 10.1016/j.cgh.2012.12.025. Epub 2013 Jan 17. PMID: 23333219; PMCID: PMC3865702.

Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, Einhorn TA, Gerstenfeld LC, Graves DT. TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res. 2010 Jul;25(7):1604-15. doi: 10.1002/jbmr.59. PMID: 20200974; PMCID: PMC3154002.

Zhao LL, Makinde EA, Olatunji OJ. Protective effects of ethyl acetate extract from Shorea roxburghii against diabetes induced testicular damage in rats. Environ Toxicol. 2021 Mar;36(3):374-385. doi: 10.1002/tox.23043. Epub 2020 Oct 15. PMID: 33058396.

Nussler AK, Billiar TR, Liu ZZ, Morris SM. Jr, Co-induction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production, J. Biol. Chem. 1994; 269: 1257-61.

Burleigh ME, Babaev VR, Oates JA, Harris RC, Gautam S, Riendeau D, Marnett LJ, Morrow JD, Fazio S, Linton M. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in LDL receptor-deficient mice. Circulation 2002; 105:1816–23.

Tomita T. Apoptosis in pancreatic β-islet cells in Type 2 diabetes. Bosn J Basic Med Sci. 2016 Aug 2;16(3):162-79. doi: 10.17305/bjbms.2016.919. Epub 2016 May 22. PMID: 27209071; PMCID: PMC4978108.

25. Fiorentino TV, Prioletta A, Zuo P, Folli F. Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des. 2013;19(32):5695-703. doi: 10.2174/1381612811319320005. PMID: 23448484.

Vincent AM, McLean LL, Backus C, Feldman EL. Short-term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J. 2005 Apr;19(6):638-40. doi: 10.1096/fj.04-2513fje. Epub 2005 Jan 27. PMID: 15677696.

Kaeidi A, Hajializadeh Z, Jahandari F, Fatemi I. Leptin attenuates oxidative stress and neuronal apoptosis in hyperglycemic condition. Fundam Clin Pharmacol. 2019 Feb;33(1):75-83. doi: 10.1111/fcp.12411. Epub 2018 Oct 14. PMID: 30203422.

Kato A, Tatsumi Y, Yako H, Sango K, Himeno T, Kondo M, Kato Y, Kamiya H, Nakamura J, Kato K. Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res. 2019 Oct;147:26-32. doi: 10.1016/j.neures.2018.11.004. Epub 2018 Nov 13. PMID: 30444976.

Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury. J Gastroenterol Hepatol. 2000; 15(7): 718-724.

How to Cite
U. P., U., & E., N. E. (2021). Telfairia occidentalis ATTENUATES LIVER DAMAGE IN STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS. IJRDO - Journal of Health Sciences and Nursing (ISSN: 2456-298X), 6(10), 11-20. Retrieved from