NONESSENTIAL PQ-INJECTIVE MODULES

  • S.Wongwai Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
  • N. Thiangtong Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
  • V.Pimonlsith Rajamangala University of Technology Thanyaburi,Pathumthani 12110, Thailand
  • P.Pornpunpaibool Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
Keywords: nonessential, PQ - injective, modules, Endomorphism Rings.

Abstract

Let M be a right R − module. A right R − module N is called nonessentialprincipally M - injective (briefly, nonessential PM - injective) if, for each s S ∈ with e s(M) M, ⊄ any R − homomorphism from s(M) to N can be extended to an R − homomorphism from M to N. M is called nonessential principally quasi- injective (briefly, nonessential PQ - injective) if, it is nonessential PM - injective. In this paper, we give some characterizations and properties of nonessential PQ - injective modules

Downloads

Download data is not yet available.

Author Biographies

S.Wongwai, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

Faculty of Architecture,

N. Thiangtong, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

Faculty of Architecture,

V.Pimonlsith, Rajamangala University of Technology Thanyaburi,Pathumthani 12110, Thailand

Faculty of Architecture,

P.Pornpunpaibool, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

Faculty of Architecture,

References

F. W. Anderson and K. R. Fuller, “Rings and Categories of Modules”,Graduate Texts in Math.No.13 ,Springer-verlag, New York, 1992.

Camillo V., Commutative rings whose principal ideals are annihilators, Portugal. Math., 46(1989), p. 33-37.

N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, “Extending Modules”,Pitman, London, 1994

T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics Vol. 131, Springer-Verlag, New York, 1991.

W. Junchao, JCP-INJECTIVE RINGS International Electronic Journal of Algebra Volume 6 (2009) 1-22

S. H. Mohamed and B. J. Muller, “Continuous and Discrete Modules”, London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.

W. K. Nicholson and M. F. Yousif, principally injective rings, J. Algebra,174(1995), 77--93.

W. K. Nicholson, J. K. Park and M. F. Yousif, principally quasi-injective modules, Comm. Algebra, 27:4(1999),1683-1693.

R. Wisbauer,“Foundations of Module and Ring Theory”, Gordon and Breach London, Tokyo e.a., 1991.

S.Wongwai, On the endomorphism ring of a semi-injective modul, Acta Math. Univ. Comenianae, Vol.71,1(2002), pp. 27-33.

S. Wongwai, Almost Mininjective Rings, Thai Journal of Mathematics, 4(1) (2006), 245-249

S. Wongwai, Small Principally Quasi-injective modules, Int. J. Contemp. Math. Sciences, Vol.6, 2011, no.11, 527-534.

Published
2017-01-31
How to Cite
Wongwai, S., Thiangtong, N., Pimonlsith, V., & Pornpunpaibool, P. (2017). NONESSENTIAL PQ-INJECTIVE MODULES. IJRDO -JOURNAL OF MATHEMATICS, 3(1), 01-07. https://doi.org/10.53555/m.v3i1.1557