Vol 5 No 9 (2019): IJRDO - Journal of Applied Science (ISSN: 2455-6653)
Articles

Non-volatile Memory Effect in Iron Nanoparticles Dispersed Ferroelectric Liquid Crystal

Lucia Marino
Physics Department, University of Calabria (UNICAL) Address: Via P. Bucci, Cubo 31C, 87036 Arcavacata di Rende, Cosenza, Italy.
Nicola Scaramuzza
Physics Department, University of Calabria (UNICAL) Address: Via P. Bucci, Cubo 31C, 87036 Arcavacata di Rende, Cosenza, Italy.
Salvatore Marino
Università della Calabria
Published October 9, 2019
Keywords
  • non-volatile memory effect,
  • iron nanoparticles,
  • ferroelectric liquid crystals,
  • dielectric spectroscopy,
  • nanocomposed materials
How to Cite
Marino, L., Scaramuzza, N., & Marino, S. (2019). Non-volatile Memory Effect in Iron Nanoparticles Dispersed Ferroelectric Liquid Crystal. IJRDO - Journal of Applied Science (ISSN: 2455-6653), 5(9), 11-24. Retrieved from https://ijrdo.org/index.php/as/article/view/3170

Abstract

The research on new devices dedicated to the information storage represents a field in which the investments and the efforts of both industry and applied sciences are continuously growing in the last decades. This is due to the fact that the development of modern society is strictly connected with the need to increase the amount of information circulating at the global level. All this, increases the demand for increasingly efficient memory systems, both in terms of execution speed and energy consumption. To meet this demand, some frontier research is proposing various alternative solutions to the traditional silicon-based technology. The study proposed in this article is part of the trend of devices based on nanocomposed materials. In particular, a pronounced memory effect has been observed in a commercial ferroelectric liquid crystal doped with iron nanoparticles using a dielectric spectroscopy technique. The experimental data would lead to the hypothesis that this effect is due to a sort of switch between an initial phase, strongly distorted because the presence of the iron nanoparticles, to a restored smectic-C phase which take place by the application of a bias voltage.

Downloads

Download data is not yet available.

References

  1. Tom Coughlin, Roger Hoyt, and Jim Handy, Digital Storage and Memory Technology (Part 1), IEEE discussing developments in digital storage technology, November 2017
  2. Torsten Hegmann, Hao Qi, and Vanessa M. Marx. Journal of Inorganic and Organometallic Polymers and Materials, Vol. 17, No. 3, September 2007
  3. Chigrinov, V.G.; Liquid Crystal Devices: Physics and Applications; Artech House: Boston, 1999.
  4. Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Jones, A.C.; Pelcovits, R.A. J. Appl. Phys., 2005, 98, 123102. DOI: 10.1063/1.2146075
  5. Lagerwall, S.T.; Ferroelectrics and Antiferroelectric Liquid Crystals; Willy-VCH, New York, 1999.
  6. Meyer, R.B.; Liebert, L.; Strzelecki, L.; Keller, P.; J. Phys. Lett. 1975, 36, 69. DOI:10.1051/jphyslet:0197500360306900
  7. Joshi, T.; Kumar, A.; Prakash, J.; Biradar, A.M.; Appl. Phys. Lett., 2010, 96, 253109. DOI: 10.1063/1.3455325
  8. Chen, Q.; Lin, M. R.; Lee, J. E..; Zhang, Q. M.; Yin, S.; Appl. Phys. Lett., 2006, 89,141121. DOI: 10.1063/1.2360183
  9. Zhang, T.; Zhong, C.; Xu, J.; Jpn J. Appl. Phys., 2009,48, 055002.DOI: 10.1143/JJAP.48.055002
  10. S. E. Braslavsky, Pure Appl. Chem., Vol. 79, No. 3, pp. 293–465, 2007
  11. Prakash, J.; Choudhary, A.; Kumar, A.; Mehta, D. S.; Biradar A. M., Appl. Phys. Lett. 2008; 93: 112904.
  12. Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Soft Matter. 2014; 10: 3842.
  13. Marino, L.; Koduru, H. K.; Marino, S.; Facal, P. M.; Wang, D; Dabrowski, R.; Scaramuzza, N. Nanosci Technol. 2017; 4(1): 1-10.
  14. Goel, P.; Arora, M.; Biradar, A. M. Journal of Applied Physics 2014; 115, 124905.
  15. Pradeep Kumar, Avinash Kishore, Aloka Sinha, Adv. Mater. Lett. 2016, 7(2), 104-110.
  16. Y. Garbovskiy and I. Glushchenko. Crystals, vol. 5, no. 4, pp. 501–533, 2015
  17. Kumar, P.; Kishore, A.; Sinha, A.; Adv. Mater. Lett. 2016, 7(2), 104-110.
  18. Kumar, M.; Kumar T.; Avasthi, D. K. Scripta Materialia, 2015, 105,46. DOI: 10.1016/j.scriptamat.2015.04.030
  19. Enachi, M.; Lupan, O.; Braniste, T.; Sarua, A.; Chow,L.; Mishra, Y.K.; Gedamu, D.; Adelung, R.; Tiginyanu I. Phys. status solidi. RRL, 2015, 1. DOI: 10.1002/pssr.201409562
  20. Chen, P.S.; Huang, C.C.; Liu, Y.W.; Chao, C.Y. Mol. Cryst. Liquid Cryst., 2009, 507, 202. DOI: 10.1080/15421400903051374
  21. Chou, T.R.; Hsieh, J.; Chen, W.T.; Chao, C.Y. Jpn. J. Appl. Phys., 2014, 53, 071701. DOI: 10.7567/JJAP.53.071701
  22. Chandran, A.; Prakash, J.; Ganguly, P.; Biradar.; A.M. RSC. Adv., 2013, 3, 17166. DOI: 10.1039/C3RA41964A
  23. Tang, C.Y.; Huang, S.M.; Lee, W. J. Phys. D.; 2011, 44, 355102. DOI: 10.1088/0022-3727/44/35/355102
  24. Urbanski, M.; Lagerwall J. P. F. J. Mater. Chem. C, 2016, 4, 3485
  25. Tomylko, S.; Yaroshchuk, O. ; Kovalchuk, O.; Maschke U. ; Yamaguchi, R. Ukr. J. Phys., 2012, 57, 239–243.
  26. Ha, Y. S.; Kim, H. J.; Park, H.G.; Seo, D. S. Opt. Express, 2012, 20, 6448–6455.
  27. Garcìa-Garcìa, A.; Vergaz, R.; Algorri, J. F.; Geday, M. A. ; Oto´n, J. M. J. Phys. D: Appl. Phys., 2015, 48, 375302.
  28. MacGregor, A. R. A. J. Mod. Optics, 1990, 37, 919-935.
  29. Stewart, I. W.; The Static and Dynamic Continuum Theory of Liquid Crystals; Taylor & Francis, London and New York, 2004.
  30. F. Gouda, K. Skarp, and S. T. Lagerwall. Ferroelectrics, 1991, Vol. 113, pp. 165-206
  31. B. Rozic, M. Jagodic, S. Gyergyek, M. Drofenik, S. Kralj, G. Cordoyiannis, and Z. Kutnjak. Mol. Cryst. Liq. Cryst, Vol. 545: pp. 99, 1323–104, 1328, 2011.
  32. Dharmendra Pratap Singh, Tripti Vimal, Yatin J. Mange, Mahesh C. Varia, Thomas Nann, K. K. Pandey, Rajiv Manohar, and Redouane Douali. Journal of Applied Physics, 123, 034101, 2018.