Nanoparticles delivery to cancer: Approaches and limitation

  • Hassan Tamam
  • Jelan A. Abdel-Aleem
  • Sayed I. Abdelrahman
  • Aly A. Abdelrahman
Keywords: Nanoparticles, nanomedicine, cancer targeting, nanoparticles delivery systems

Abstract

Nanoparticles have received attention as promising delivery system of chemotherapy for cancer treatment. There are many mechanisms through which nanoparticles reaches the tumor site. Many nanoparticles delivery systems have been developed to solve problems associated with chemotherapeutic drugs such as solubility and stability or to increase tumor site specificity as by attachment of ligand to surface of nanoparticles. We provide a critical review about the factors affecting the delivery of nanoparticles to tumor site, mechanisms by which nanoparticles reach the tumor site, types of nanoparticles and limitation of nanomedicine.

Downloads

Download data is not yet available.

Author Biographies

Hassan Tamam

Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Jelan A. Abdel-Aleem

Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Sayed I. Abdelrahman

Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

Aly A. Abdelrahman

Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt

References

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018;68(6):394-424.

Park JH, Lee S, Kim J-H, Park K, Kim K, Kwon IC. Polymeric nanomedicine for cancer therapy. Progress in Polymer Science. 2008;33(1):113-37.

Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophor EL: the drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer. 2001;37(13):1590-8.

Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of Controlled Release. 2009;133(1):11-7.

Khan JA, Kainthan RK, Ganguli M, Kizhakkedathu JN, Singh Y, Maiti S. Water Soluble Nanoparticles from PEG-Based Cationic Hyperbranched Polymer and RNA That Protect RNA from Enzymatic Degradation. Biomacromolecules. 2006;7(5):1386-8.

Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nature Reviews Cancer. 2006;6:583.

Zhang X-Q, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. Interactions of nanomaterials and biological systems: Implications to personalized nanomedicine. Advanced Drug Delivery Reviews. 2012;64(13):1363-84.

Che-Ming Jack H, Liangfang Z. Therapeutic Nanoparticles to Combat Cancer Drug Resistance. Current Drug Metabolism. 2009;10(8):836-41.

Huwyler J, Cerletti A, Fricker G, Eberle AN, Drewe J. By-passing of P-glycoprotein Using Immunoliposomes. Journal of drug targeting. 2002;10(1):73-9.

Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature Reviews Drug Discovery. 2008;7:771.

Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T, et al. Temporal Targeting of Tumour Cells and Neovasculature with a Nanoscale Delivery System2005. 568-72 p.

Albanese A, Tang PS, Chan WCW. The Effect of Nanoparticle Size, Shape, and Surface Chemistry on Biological Systems. Annual Review of Biomedical Engineering. 2012;14(1):1-16.

Dong X, Mumper RJ. Nanomedicinal strategies to treat multidrug-resistant tumors: current progress. Nanomedicine. 2010;5(4):597-615.

Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews. 2013;65(1):71-9.

Perrault SD, Chan WCW. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proceedings of the National Academy of Sciences. 2010;107(25):11194-9.

Matsumura Y, Maeda H. A New Concept for Macromolecular Therapeutics in Cancer Chemotherapy: Mechanism of Tumoritropic Accumulation of Proteins and the Antitumor Agent Smancs. Cancer Research. 1986;46(12 Part 1):6387-92.

Liechty WB, Caldorera-Moore M, Phillips MA, Schoener C, Peppas NA. Advanced molecular design of biopolymers for transmucosal and intracellular delivery of chemotherapeutic agents and biological therapeutics. Journal of Controlled Release. 2011;155(2):119-27.

Zhong Y, Meng F, Deng C, Zhong Z. Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules. 2014;15(6):1955-69.

Bae YH, Park K. Targeted drug delivery to tumors: Myths, reality and possibility. Journal of Controlled Release. 2011;153(3):198-205.

Jain RK, Stylianopoulos T. Delivering nanomedicine to solid tumors. Nature reviews Clinical oncology. 2010;7(11):653-64.

Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine: Nanotechnology, Biology and Medicine. 2012;8(2):147-66.

Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews. 2012;64:206-12.

Nori A, Jensen KD, Tijerina M, Kopečková P, Kopeček J. Tat-Conjugated Synthetic Macromolecules Facilitate Cytoplasmic Drug Delivery To Human Ovarian Carcinoma Cells. Bioconjugate Chemistry. 2003;14(1):44-50.

Kirpotin DB, Drummond DC, Shao Y, Shalaby MR, Hong K, Nielsen UB, et al. Antibody Targeting of Long-Circulating Lipidic Nanoparticles Does Not Increase Tumor Localization but Does Increase Internalization in Animal Models. Cancer Research. 2006;66(13):6732-40.

Jhaveri A, Deshpande P, Torchilin V. Stimuli-sensitive nanopreparations for combination cancer therapy. Journal of Controlled Release. 2014;190:352-70.

Tannock IF, Rotin D. Acid pH in Tumors and Its Potential for Therapeutic Exploitation. Cancer Research. 1989;49(16):4373-84.

Obata Y, Tajima S, Takeoka S. Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. Journal of Controlled Release. 2010;142(2):267-76.

Wong C, Stylianopoulos T, Cui J, Martin J, Chauhan VP, Jiang W, et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proceedings of the National Academy of Sciences. 2011;108(6):2426-31.

Gao W, Chan JM, Farokhzad OC. pH-Responsive Nanoparticles for Drug Delivery. Molecular Pharmaceutics. 2010;7(6):1913-20.

Yang J, Duan Y, Zhang X, Wang Y, Yu A. Modulating the cellular microenvironment with disulfide-containing nanoparticles as an auxiliary cancer treatment strategy. Journal of Materials Chemistry B. 2016;4(22):3868-73.

Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A New Temperature-sensitive Liposome for Use with Mild Hyperthermia: Characterization and Testing in a Human Tumor Xenograft Model. Cancer Research. 2000;60(5):1197-201.

Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research. 2011;44(10):936-46.

Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN. Drug Release from Electric-Field-Responsive Nanoparticles. ACS Nano. 2012;6(1):227-33.

Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clinical and translational medicine. 2017;6(1):44. Epub 2017/12/13.

Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular Permeability in a Human Tumor Xenograft: Molecular Size Dependence and Cutoff Size. Cancer Research. 1995;55(17):3752-6.

Venturoli D, Rippe B. Ficoll and dextran vs. globular proteins as probes for testing glomerular permselectivity: effects of molecular size, shape, charge, and deformability. American Journal of Physiology-Renal Physiology. 2005;288(4):F605-F13.

Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics. 2008;69(1):1-9.

Tang L, Fan TM, Borst LB, Cheng J. Synthesis and Biological Response of Size-Specific, Monodisperse Drug–Silica Nanoconjugates. ACS Nano. 2012;6(5):3954-66.

Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology. 2009;86(3):215-23.

Hirota K, Terada H. Endocytosis of Particle Formulations by Macrophages and Its Application to Clinical Treatment2012. 413-28 p.

Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chemical Society Reviews. 2012;41(7):2780-99.

Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews. 2002;54(5):631-51.

Grislain L, Couvreur P, Lenaerts V, Roland M, Deprez-Decampeneere D, Speiser P. Pharmacokinetics and distribution of a biodegradable drug-carrier. International Journal of Pharmaceutics. 1983;15(3):335-45.

Jokerst JV, Lobovkina T, Zare RN, Gambhir SS. Nanoparticle PEGylation for imaging and therapy. Nanomedicine (London, England). 2011;6(4):715-28.

Olivier J-C. Drug Transport to Brain with Targeted Nanoparticles. NeuroRx. 2005;2(1):108-19.

Li S-D, Huang L. Stealth nanoparticles: High density but sheddable PEG is a key for tumor targeting. Journal of Controlled Release. 2010;145(3):178-81.

Ayala V, Herrera AP, Latorre-Esteves M, Torres-Lugo M, Rinaldi C. Effect of surface charge on the colloidal stability and in vitro uptake of carboxymethyl dextran-coated iron oxide nanoparticles. Journal of nanoparticle research : an interdisciplinary forum for nanoscale science and technology. 2013;15(8):1874.

Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond. Nano letters. 2010;10(7):2543-8.

Dellian M, Yuan F, Trubetskoy VS, Torchilin VP, Jain RK. Vascular permeability in a human tumour xenograft: molecular charge dependence. British Journal Of Cancer. 2000;82:1513.

Leroueil PR, Hong S, Mecke A, Baker JR, Orr BG, Banaszak Holl MM. Nanoparticle Interaction with Biological Membranes: Does Nanotechnology Present a Janus Face? Accounts of Chemical Research. 2007;40(5):335-42.

Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochemical and Biophysical Research Communications. 2007;353(1):26-32.

Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials. 2003;24(6):1001-11.

He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657-66.

Chithrani BD, Chan WCW. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes. Nano letters. 2007;7(6):1542-50.

Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, et al. Discoidal Porous Silicon Particles: Fabrication and Biodistribution in Breast Cancer Bearing Mice. Advanced Functional Materials. 2012;22(20):4225-35.

Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, et al. Polymer particle shape independently influences binding and internalization by macrophages. Journal of Controlled Release. 2010;147(3):408-12.

Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology. 2007;2:249.

Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(13):4930-4.

Decuzzi P, Ferrari M. The adhesive strength of non-spherical particles mediated by specific interactions. Biomaterials. 2006;27(30):5307-14.

Suri SS, Fenniri H, Singh B. Nanotechnology-based drug delivery systems. Journal of Occupational Medicine and Toxicology. 2007;2(1):16.

Barenholz Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. Journal of controlled release : official journal of the Controlled Release Society. 2012;160(2):117-34.

Sunderland CJ, Steiert M, Talmadge JE, Derfus AM, Barry SE. Targeted nanoparticles for detecting and treating cancer. Drug Development Research. 2006;67(1):70-93.

Liu Y, Tamam H, Yeo Y. Mixed Liposome Approach for Ratiometric and Sequential Delivery of Paclitaxel and Gemcitabine. AAPS PharmSciTech. 2017.

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48. Epub 2012/10/06.

Bozzuto G, Molinari A. Liposomes as nanomedical devices. 2015;Volume 10(1):975-99.

Karanth H, Murthy RSR. pH-Sensitive liposomes-principle and application in cancer therapy. Journal of Pharmacy and Pharmacology. 2007;59(4):469-83.

Chen K-J, Liang H-F, Chen H-L, Wang Y, Cheng P-Y, Liu H-L, et al. A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano. 2013;7(1):438-46.

Lee Y, Thompson DH. Stimuli-responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2017;9(5):e1450.

R E Pagano a, Weinstein JN. Interactions of Liposomes with Mammalian Cells. Annual Review of Biophysics and Bioengineering. 1978;7(1):435-68.

Ogawara K, Un K, Tanaka K, Higaki K, Kimura T. In vivo anti-tumor effect of PEG liposomal doxorubicin (DOX) in DOX-resistant tumor-bearing mice: Involvement of cytotoxic effect on vascular endothelial cells. Journal of controlled release : official journal of the Controlled Release Society. 2009;133(1):4-10. Epub 2008/10/09.

Muller RH, Mehnert W, Lucks JS, Schwarz C, Zur Muhlen A, Weyhers H, et al. Solid lipid nanoparticles (SLN) – an Alternative Colloidal Carrier System for Controlled Drug Delivery1995. 62-9 p.

Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics. 2009;366(1):170-84.

Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Advanced Drug Delivery Reviews. 2007;59(6):491-504.

Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491-504.

Kang KW, Chun M-K, Kim O, Subedi RK, Ahn S-G, Yoon J-H, et al. Doxorubicin-loaded solid lipid nanoparticles to overcome multidrug resistance in cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine. 2010;6(2):210-3.

Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. European Journal of Pharmaceutics and Biopharmaceutics. 2004;58(3):673-80.

Farokhzad OC, Langer R. Impact of Nanotechnology on Drug Delivery. ACS Nano. 2009;3(1):16-20.

Crucho CIC. Stimuli-Responsive Polymeric Nanoparticles for Nanomedicine. ChemMedChem. 2015;10(1):24-38.

Bajpai AK, Shukla SK, Bhanu S, Kankane S. Responsive polymers in controlled drug delivery. Progress in Polymer Science. 2008;33(11):1088-118.

Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, et al. Translocation and fate of multi-walled carbon nanotubes in vivo. Carbon. 2007;45(7):1419-24.

Parveen S, Sahoo SK. Polymeric nanoparticles for cancer therapy. Journal of drug targeting. 2008;16(2):108-23.

Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y, Şen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. International Journal of Pharmaceutics. 2009;371(1):170-6.

Bai J, Li Y, Du J, Wang S, Zheng J, Yang Q, et al. One-pot synthesis of polyacrylamide-gold nanocomposite. Materials Chemistry and Physics. 2007;106(2):412-5.

Turos E, Shim J-Y, Wang Y, Greenhalgh K, Reddy GSK, Dickey S, et al. Antibiotic-conjugated polyacrylate nanoparticles: New opportunities for development of anti-MRSA agents. Bioorganic & Medicinal Chemistry Letters. 2007;17(1):53-6.

Hu K, Li J, Shen Y, Lu W, Gao X, Zhang Q, et al. Lactoferrin-conjugated PEG–PLA nanoparticles with improved brain delivery: In vitro and in vivo evaluations. Journal of Controlled Release. 2009;134(1):55-61.

Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869-76.

Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627-34.

Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews. 2008;60(15):1615-26.

Panyam J, Sahoo SK, Prabha S, Bargar T, Labhasetwar V. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(d,l-lactide-co-glycolide) nanoparticles. International Journal of Pharmaceutics. 2003;262(1):1-11.

Sahoo SK, Panyam J, Prabha S, Labhasetwar V. Residual polyvinyl alcohol associated with poly (d,l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Journal of Controlled Release. 2002;82(1):105-14.

Panyam J, Zhou W-Z, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. The FASEB Journal. 2002;16(10):1217-26.

Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. European Journal of Pharmaceutics and Biopharmaceutics. 2007;67(1):1-8.

Xu J, Luft JC, Yi X, Tian S, Owens G, Wang J, et al. RNA Replicon Delivery via Lipid-Complexed PRINT Protein Particles. Molecular Pharmaceutics. 2013;10(9):3366-74.

Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. A New Class of Polymers: Starburst-Dendritic Macromolecules. Polymer Journal. 1985;17:117.

Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of Pharmacy & Bioallied Sciences. 2014;6(3):139-50.

Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacological Reports. 2012;64(5):1020-37.

Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered Nanoparticles for Drug Delivery in Cancer Therapy. Angewandte Chemie International Edition. 2014;53(46):12320-64.

Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Advanced Drug Delivery Reviews. 2005;57(15):2106-29.

D'Emanuele A, Attwood D. Dendrimer–drug interactions. Advanced Drug Delivery Reviews. 2005;57(15):2147-62.

Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discovery Today. 2010;15(5):171-85.

Singh P, Gupta U, Asthana A, Jain NK. Folate and Folate−PEG−PAMAM Dendrimers: Synthesis, Characterization, and Targeted Anticancer Drug Delivery Potential in Tumor Bearing Mice. Bioconjugate Chemistry. 2008;19(11):2239-52.

Yu H, Nie Y, Dohmen C, Li Y, Wagner E. Epidermal Growth Factor–PEG Functionalized PAMAM-Pentaethylenehexamine Dendron for Targeted Gene Delivery Produced by Click Chemistry. Biomacromolecules. 2011;12(6):2039-47.

Wängler C, Moldenhauer G, Eisenhut M, Haberkorn U, Mier W. Antibody−Dendrimer Conjugates: The Number, Not the Size of the Dendrimers, Determines the Immunoreactivity. Bioconjugate Chemistry. 2008;19(4):813-20.

Waite CL, Roth CM. PAMAM-RGD Conjugates Enhance siRNA Delivery Through a Multicellular Spheroid Model of Malignant Glioma. Bioconjugate Chemistry. 2009;20(10):1908-16.

Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO, et al. Polyamidoamine (PAMAM) Dendrimer Conjugates of “Clickable” Agonists of the A(3) Adenosine Receptor and Coactivation of the P2Y(14) Receptor by a Tethered Nucleotide. Bioconjugate Chemistry. 2010;21(2):372-84.

Lopez AI, Reins RY, McDermott AM, Trautner BW, Cai C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Molecular BioSystems. 2009;5(10):1148-56.

Taratula O, Garbuzenko OB, Kirkpatrick P, Pandya I, Savla R, Pozharov VP, et al. Surface-engineered targeted PPI dendrimer for efficient intracellular and intratumoral siRNA delivery. Journal of Controlled Release. 2009;140(3):284-93.

Czarnobaj K. Preparation and Characterization of Silica Xerogels as Carriers for Drugs. Drug Delivery. 2008;15(8):485-92.

Quintanar-Guerrero D, Ganem-Quintanar A, Nava-Arzaluz MG, Piñón-Segundo E. Silica xerogels as pharmaceutical drug carriers. Expert opinion on drug delivery. 2009;6(5):485-98.

Prokopowicz M. Synthesis and in vitro characterization of freeze-dried doxorubicin-loaded silica xerogels. Journal of Sol-Gel Science and Technology. 2009;53(3):525-33.

Czarnobaj K, Łukasiak J. In vitro release of cisplatin from sol–gel processed organically modified silica xerogels. Journal of Materials Science: Materials in Medicine. 2007;18(10):2041-4.

Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710.

Amato G. Silica-Encapsulated Efficient and Stable Si Quantum Dots with High Biocompatibility. Nanoscale Research Letters. 2010;5(7):1156-60.

Di Pasqua AJ, Wallner S, Kerwood DJ, Dabrowiak JC. Adsorption of the PtII Anticancer Drug Carboplatin by Mesoporous Silica. Chemistry & Biodiversity. 2009;6(9):1343-9.

Kim T-W, Slowing II, Chung P-W, Lin VS-Y. Ordered Mesoporous Polymer−Silica Hybrid Nanoparticles as Vehicles for the Intracellular Controlled Release of Macromolecules. ACS Nano. 2011;5(1):360-6.

He Q, Gao Y, Zhang L, Zhang Z, Gao F, Ji X, et al. A pH-responsive mesoporous silica nanoparticles-based multi-drug delivery system for overcoming multi-drug resistance. Biomaterials. 2011;32(30):7711-20.

Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science. 2006;61(3):1027-40.

Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Advanced Drug Delivery Reviews. 2008;60(11):1307-15.

Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small. 2005;1(3):325-7.

Yang J, Lee J, Kang J, Oh SJ, Ko H-J, Son J-H, et al. Smart Drug-Loaded Polymer Gold Nanoshells for Systemic and Localized Therapy of Human Epithelial Cancer. Advanced Materials. 2009;21(43):4339-42.

Nagpal K, Singh SK, Mishra DN. Chitosan Nanoparticles: A Promising System in Novel Drug Delivery. Chemical and Pharmaceutical Bulletin. 2010;58(11):1423-30.

Wei X-L, Mo Z-H, Li B, Wei J-M. Disruption of HepG2 cell adhesion by gold nanoparticle and Paclitaxel disclosed by in situ QCM measurement. Colloids and Surfaces B: Biointerfaces. 2007;59(1):100-4.

Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Advanced Drug Delivery Reviews. 2010;62(3):346-61.

Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S, et al. Targeted Delivery of Gemcitabine to Pancreatic Adenocarcinoma Using Cetuximab as a Targeting Agent. Cancer Research. 2008;68(6):1970-8.

Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Advanced Drug Delivery Reviews. 2008;60(15):1638-49.

Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews. 2001;53(3):321-39.

Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49(8):1993-2007.

Du J-Z, Sun T-M, Song W-J, Wu J, Wang J. A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery. Angewandte Chemie. 2010;122(21):3703-8.

Wilhelm S, J. Tavares A, Dai Q, Ohta S, Audet J, Dvorak H, et al. Analysis of nanoparticle delivery to tumours2016. 16014 p.

Della Rocca J, Liu D, Lin W. Are high drug loading nanoparticles the next step forward for chemotherapy? Nanomedicine (Lond). 2012;7(3):303-5.

Akiyama Y, Mori T, Katayama Y, Niidome T. The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice. Journal of Controlled Release. 2009;139(1):81-4.

Panagi Z, Beletsi A, Evangelatos G, Livaniou E, Ithakissios DS, Avgoustakis K. Effect of dose on the biodistribution and pharmacokinetics of PLGA and PLGA–mPEG nanoparticles. International Journal of Pharmaceutics. 2001;221(1):143-52.

Mayer LD, Tai LCL, Ko DSC, Masin D, Ginsberg RS, Cullis PR, et al. Influence of Vesicle Size, Lipid Composition, and Drug-to-Lipid Ratio on the Biological Activity of Liposomal Doxorubicin in Mice. Cancer Res. 1989;49(21):5922.

Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nature Nanotechnology. 2009;4:411.

Sengupta S. Cancer Nanomedicine: Lessons for Immuno-Oncology. Trends Cancer. 2017;3(8):551-60.

Published
2019-04-18
How to Cite
Hassan Tamam, Jelan A. Abdel-Aleem, Sayed I. Abdelrahman, & Aly A. Abdelrahman. (2019). Nanoparticles delivery to cancer: Approaches and limitation. IJRDO - Journal of Applied Science (ISSN: 2455-6653), 5(4), 17-44. Retrieved from https://ijrdo.org/index.php/as/article/view/2798