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Abstract 
An interconnected power systems are subjected to 

performance gradual decline due to sudden small 

load perturbations, structural variations, parameter 

uncertainties, etc. The LFC objective is to maintain 

the balance of the area generation-demand by 

adjusting the obtained outputs on regulating units 

in response to the frequency and tie line power 

deviations. The state of the system changes, as the 

demand varies from its normal operating value.  

The internal model control (IMC) scheme, which 

includes the concept of model-order reduction and 

modified IMC filter design is discussed. For model 

reduction, the combination of Particle Swarm 

Optimization (PSO) and Dominant Pole Retention 

technique is proposed. The concept is that a lower 

order is placed in place of full order of the system 

for internal model control. In this the performance 

to counteract load disturbances can be achieved by 

using improved closed loop system. 
 

Keywords 

 Load Frequency Control, Internal Model control (IMC), 

model order reduction (MOR), Particle Swarm 
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1. Introduction 

 
WITH the rapid progress in electric energy, the total 

energy system has become a complicated one. 

Generation, transmission, and distribution systems 

are installed in different locations which are 

interconnected through the transmission lines are 

known as tie-lines. By this sort of connections, both 

area frequency and tie-line power interchange 

fluctuates frequently because of  random variations in 

power load demand,  parameter variations, modeling 

errors, and disturbance due to  climatic conditions. 

By this, to regain stability it is essential to maintain 

synchronism and prescribed voltage levels in case 

disturbances like faults, line trips, overload 

conditions. In this context, load frequency control 

(LFC) is in a position to provide a healthy frequency 

and tie line power interchange. The significance of 

LFC is to 1) balancing frequency deviation to be 

zero, 2) Unexpected load disturbances to be  

neutralized, 3) reduce the unscheduled tie-line power 

flows among neighboring areas and transient 

variations in area frequency, 4) Regain from 

modeling uncertainties and system nonlinearities 

within a endurable region, and 5) the ability to 

provide well under prescribed overshoot and settling 

time in both the frequency and tie-line power 

deviations. From this, LFC can be considered as 

robust control problem as well as objective 

optimization. 

 

Wide range of control methods like integral control, 

discrete time sliding mode control, optimal control, 

intelligent control, adaptive and self-tuning control, 

PI/PID control, IP control, and robust control are 

present to provide LFC optimized results. It can be 

observed that variation of parameters such as 

turbines, governors, generators etc., fluctuations 

depends upon system and power flow conditions 

which can vary every minute. By this, uncertainty in 

parameter is a major problem for the concern of 

control technique. Hence, the LFC provides robust 

control which concerns   uncertainties in system 

parameters as well as disturbance rejection. 

 

While viewing the power system, one issue is that the 

large size power system results in enormous increase 

in both the number of controllers and order of the 

system. As   ever-growing complexity of power 

systems in the generation industry, providing 

reduced-order models of these large-scale systems 

plays a significant role. By this view, the design and 

implementation of the control systems model order 

reduction plays a pivotal role. Next to this, size of 

system reduces its computational complexity, size, 

and costs are also minimized. By viewing all the 

circumstances the IMC based controller using model-

order reduction scheme for internal-model of a plant 

proposed. IMC consists of IMC controller, model 

order reduction and IMC filter. By this it can control 

plant/model mismatches and parameter uncertainties. 

Superiority of this approach is provides faster 

disturbance rejection, and provides robust and 

optimal performance. 

The specific aim is to accomplish the following 

objectives: 
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1) Reducing the order of the system by using   model-

order reduction scheme which consists of Particle 

Swarm Optimization (PSO) and Dominant Pole 

Retention technique are applied. These reduced order 

models are treated as internal (predictive) models for 

IMC structure. 

 

2) TDF-IMC structure is used provide the system to 

free from load disturbance. The structure and the 

implemented scheme, which is effective for utilizing 

the reduced order models 

 

3) Provide a robust study by injecting 50% 

disturbance uncertainty in each parameter, 

simultaneously. The optimal robustness can be 

presented in terms of multiplicative uncertainty 

(error), respectively. 

 

2. IMC Theory  and  Model Order 

Reduction 
 

The layout of IMC structure is as shown in Fig.1. The 

structure of the control device consists of the 

feedback controller Q(s), the real plant to be 

controlled G(s), and a predictive model of the plant, 

i.e., the internal-model𝐺𝑀(𝑠). The internal-model 

loop to employ the distinguish between outputs of 

G(s) and𝐺𝑀(s). The difference considered as error, 

represents the effect of disturbance D(s) and 

plant/model mismatch if exits. 

 

Fig1.  Basic IMC structure. 

The two-step scheme for producing IMC controller is  

1) Factorize the model as shown    

 𝐺𝑀(𝑠) = 𝐺𝑀+(𝑠)𝐺𝑀−(𝑠)                                        (1) 

Such that is a non-minimum phase part and is a 

minimum phase part  

2) Define the IMC controller as  

 Q(s) =  𝐺𝑀−
−1 (𝑠)𝐹(𝑠)                                                (2) 

Where F(s) is a low-pass filter, commonly of the 

form  

F(s) =  (1 + 𝜆𝑠)−𝑛                                                   (3) 

 In (3), λ is a tuning parameter, which varies the 

control of the closed loop system, and removes 

mismatches at the high frequency, thus responsible 

for robustness. n is an integer, chosen such that 

becomes proper/semi-proper for physical realization. 

3. Two-Degree-of Freedom IMC 

Controller 

The groundwork on IMC scheme is on pole-zero 

cancellation. It offers very good tracking ability; 

however, the disturbance rejection response may be 

indisposed to action. So, a trade-off is required, 

where the execution for load disturbance rejection 

appear by sacrificing set-point tracking. To keep 

away from this problem, two different controllers as 

shown in Fig. 2, are introduced in basic IMC 

structure. At present the set-point response and 

disturbance response of the modified IMC structure 

namely TDF-IMC, can be improved, and each 

controller can be tuned independently. 

In present task, we considered the TDF-IMC 

structure presents in Fig 2, from this define 𝑄𝐷(𝑠) as 

a disturbance rejection filter (feedback controller) 

and 𝑄1(𝑠) as a set-point filter. The closed-loop 

supplementary sensitivity function T(s) and 

multiplicative error ε(s) which is a 

 

Fig. 2. TDF-IMC structure 

measure of plant/model mismatch can be defined, 

respectively, by           

T(s) = 𝑄𝐷(𝑠)𝐺𝑀(𝑠)                                                  (4) 

ε(s) = 
(𝐺(𝑠)−𝐺𝑀(𝑠))

𝐺𝑀(𝑠)
.                                                    (5) 

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-4 | April,2015 | Paper-6 93 



                                                               

 

- -  

JOURNAL OF MECHANICAL AND CIVIL ENGINEERING  

VOL 2 ISSUE 4 APRIL 2015 Paper 6 

                ѱ = 
𝑎2𝜆𝑓𝑝1𝑝2(𝑝1+𝑝2)+(𝑎𝜆𝑓

3+3𝑎2𝜆𝑓
2)𝑝1𝑝2+𝑎𝜆𝑓(𝑝1

2+𝑝2
2+𝑝1𝑝2)+(𝜆𝑓

3+3𝑎𝜆𝑓
2)(𝑝1+𝑝2)+3𝜆𝑓

2

𝑎2𝑝1𝑝2+𝑎(𝑝1+𝑝2+1)
                 (10) 

             Ɵ= 
          𝑎𝜆𝑓

2𝑝1
2𝑝2

2+(3𝑎𝜆𝑓
2+3𝑎2𝜆𝑓)𝑝1𝑝2−3𝑎𝜆𝑓(𝑝1+𝑝2)+𝑎𝜆𝑓𝑝1𝑝2(𝑝1+𝑝2)+(𝜆𝑓

3+3𝑎𝜆𝑓)𝑝1𝑝2−3𝜆𝑓

𝑎2𝑝1𝑝2+𝑎(𝑝1+𝑝2+1)
      (11) 

 

thus  a proper IMC filter is subjected to  design IMC 

based controller for second-order internal-model of a 

system, therefore, F(s) of the form (3) is replaced by 

a modified filter F’(s) such that              

F’(s)=

 
𝜓𝑠^2+Ɵ𝑠+1

(𝜆𝑓+1)𝑥                                                        (6) 

 Where x=3 or 4, depends on the requirement to make 

controller proper. By replacing (6) into (2), the TDF-

IMC controller can be provided as  

 𝑄𝐷(𝑠) =
𝐺𝑀−

−1 (𝑠)(𝜓𝑠2+Ɵ𝑠+1)

(𝜆𝑓𝑠+1)𝑥                                        (7)                                      

Where ψ, Ɵ should satisfy the following condition for 

each pole, 𝑝1 and 𝑝2 of the second order system 

   lim
𝑠→−𝑝𝑖

(1 − 𝑇(𝑠)) = 0                                       (8)                                   

Substituting (1) and (7) in (4), we get  

     𝑇(𝑠) =
𝐺𝑀+(𝑠)(𝜓𝑠2+Ɵ𝑠+1)

(𝜆𝑓+1)𝑥                                      (9)                                   

 Now, from (9), this cases arises for 𝐺𝑀+(𝑠): 

Case: When 𝐺𝑀+(𝑠) contains non-minimum phase 

terms, then factorize 𝐺𝑀(𝑠) such that 𝐺𝑀+(𝑠) has 

only all-pass terms, i.e., 𝐺𝑀+(𝑠) = (1-as)/ (1+as), 

then put x=3, and by substituting (9) into (8), we get 

(10) and (11) at shown below. 

Thus, it is clear that controller QD(s) expressed by (7) 

does not require heavy computational burden. Hence, 

the simplicity and the practical implementation are 

the major advantages of the scheme. Here, considered 

with disturbance rejection problem, i.e., effect of D(s) 

on Y(s), we need not to evaluate set-point filter Q1(s) 

since R(s) = 0 is assumed. 

 4. Particle Swarm Optimization 

Let us consider the transfer function of the higher 

order system of the order  ‘n’ can be of the form  

𝐺𝑛(𝑠) =  
𝑁(𝑠)

𝐷(𝑠)
=

𝑎0+𝑎1𝑠+𝑎2𝑠2+⋯𝑎𝑛−1𝑠𝑛−1

𝑏0+𝑏1𝑠+𝑏2𝑠2+⋯+𝑏𝑛−1𝑠𝑛−1+𝑠𝑛          (12)                                        

And consider the lower order system  of the order ‘r’ 

synthesized is: 

𝐺𝑟(𝑠) =  
𝑐0+𝑐1𝑠+⋯+𝑐𝑟−1𝑠𝑟−1

𝑑0+𝑑1𝑠+𝑑2𝑠2+⋯+𝑑𝑛−1𝑠𝑛−1+𝑠𝑛 ,r˂n             (13)                            

The variation of  the lower order system from the 

original system response can be represented as error 

index ‘E’ is known as Integral Square Error (ISE) 

which is represented as follows 

E = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]2∞

0
dt                                       (14) 

Where y(t) & 𝑦𝑟(𝑡) are the step responses of the 

original and reduced order models 

The PSO method is a population based search 

algorithm where each and every individual can be 

noted as a particle and presents in a candidate 

solution. In PSO, compete to perform by reproducing 

from their achieved peers. And then, each particle has 

a memory to recall the best in the search space.  The  

area where it corresponds to best fitness is considered 

as pbest and the overall particle from the population 

can be considered as gbest. 

In d-dimensional search space, the velocity and the 

position of the particles can be updated as follows: 

𝑣𝑖𝑑
𝑛+1 =  𝑤𝑣𝑖𝑑

𝑛 + 𝑐1𝑟1
𝑛(𝑝𝑖𝑑

𝑛 − 𝑥𝑖𝑑
𝑛 ) + 𝑐2𝑟2

𝑛(𝑝𝑔𝑑
𝑛 − 𝑥𝑖𝑑

𝑛 )  

                              (15)                                                                                     

𝑥𝑖𝑑
𝑛+1 =  𝑥𝑖𝑑

𝑛 + 𝑣𝑖𝑑
𝑛+1                                               (16)                                         

Where, 

W = inertia weight, 

𝑐1, 𝑐2 =  cognitive and social acceleration, 

respectively. 

𝑟1, 𝑟2 =  random numbers uniformly distributed in the 

range (0,1). 

The dimensional vector of the swarm can be 

represented by 𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2 , … . . 𝑥𝑖𝑑) and the 

velocity can be represented by 𝑉𝑖 = (𝑣𝑖1 , 𝑣𝑖2 … . , 𝑣𝑖𝑑). 

The previous best values as 𝑃𝑖 = (𝑝𝑖1 , 𝑝𝑖2, … . 𝑝𝑖𝑑). 
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In PSO, each particle can move in search space as its 

own best previous values.  The velocity update can 

consists in particle swarm as: namely momentum, 

cognitive and social parts.  

Particles moves among the space with a d-

dimesnsional problem. This absorbs new solutions 

along with their fitness, and measures the quality. 

The particles represents the speed of each by one. 

The cognition only component treats individual as 

isolated beings. The sum of the previous best 

positions and the  new velocity will provide the new 

one.  

The values of 𝑐1 and 𝑐2 represents the relative pull of 

pbest and gbest and the values of 𝑟1 and 𝑟2 supports 

in varying the pulls. From the equations (15) & (16), 

subscripts represent the iteration number. Fig. 3 

represents the position updates of a two-dimensional 

parameter space.  

In this, the PSO is subjected to minimize the 

objective function ‘E’ as given in (14),  parameters  

to be considered are the coefficeints of numerator and 

denominatorpolynomials of the lower order system as 

from subjests to the conditions as follows: 

i) To provide a reduced order model, it follws the 

condition          

𝑑𝑖˃0 ; I = 0,1,2,….,(r-1)                                        (17) 

ii) To nully any steady state error from the 

approximation, the condition is : 

𝑑0 =  
𝑏0

𝑎0
𝑐0                                                              (18) 

Fig. 3. Position updates in a PSO for a two 

dimensional parameter space. 

 

The proposed algorithm represents in flowchart as 

shown below 

Fig.  4 Flowchart of PSOAlgorithm. 

5. Dominant Pole Retention Technique 

Frequency compensation is introduced by   

maintaining the characteristics such as gain and phase 

of the amplifier's open loop output or of its feedback 

network, or the two, which oppose the conditions that 

provides to oscillation. This can be done normally by 

the internal or external use of resistance-capacitance 

networks. This method commonly called dominant-

pole compensation, which is of the structure of lag 

compensation. The amplifier gain is set to one (0 dB), 

when a pole is placed at an appropriate low frequency  

in the open loop response The least  frequency pole 

considered as  dominant pole since it decreases  all 

the  higher frequency poles. The solution of the 

concept is the difference between the open loop 

output phase and the phase response of a feedback 

network having no reactive elements never fall below 

−180° while amplifiers gain is one or more, securing 

stability. 

By boosting this, dominant-pole compensation 

provides maintain of overshoot and ringing in the 

amplifier step response, which provides demand 

requirement more than the easy required for the  

stability. 
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6. Transfer Function Model 

 An interconnected two area Load Frequency Control 

system with different controllers are considered .The 

composite block diagram and state space model of 

the system is shown below. The dynamic behavior of 

the LFC system is described by the linear vector 

matrix form 

 

 
Fig.5. Two Area system with controllers 

 

A. MATHEMATICAL MODELLING: 

 

For the above system: 

 

ẋ1 =  −
1

𝑇𝑝𝑠1
𝑥1 +

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑥2 −

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑥7 −

𝐾𝑝𝑠1

𝑇𝑝𝑠1
𝑤1           

                         (19) 

   ẋ2 =  −
1

𝑇𝑡1
𝑥2 +

1

𝑇𝑡1
𝑥3                                       (20) 

 ẋ3 =  −
1

𝑅1𝑇𝑠𝑔1
𝑥1 −

1

𝑇𝑠𝑔1
𝑥3 +

1

𝑇𝑠𝑔1
𝑢1               (21)                       

  ẋ4 =  −
1

𝑇𝑝𝑠2
𝑥4 +

𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑥5 +

𝑎12𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑥7 −

𝐾𝑝𝑠2

𝑇𝑝𝑠2
𝑤2       

       (22)                                                             

 ẋ5 =  −
1

𝑇𝑡2
𝑥5 +

1

𝑇𝑡2
𝑥6                                       (23) 

 ẋ6 =  −
1

𝑅2𝑇𝑠𝑔2
𝑥4 −

1

𝑇𝑠𝑔2
𝑥6 +

1

𝑇𝑠𝑔2
𝑢2               (24)                      

  ẋ7 = 2𝜋𝑇12𝑥1 -2𝜋𝑇12𝑥4                                   (25)                                   

   ẋ8 =  𝑏1𝑥1 + 𝑥7                                               (26)                        

    ẋ9 =  𝑏2𝑥4 − 𝑎12𝑥7                                        (27)                                                                     

The nine equations (19) to (27) can be organized in 

the following vector matrix form 

ẋ = Ax+Bu+Fw                                                      (28) 

Where  

x = [𝑥1 𝑥2 … . . 𝑥9]𝑇 = state vector 

u = [𝑢1 𝑢2]𝑇 = control vector 

w = [𝑤1 𝑤2]𝑇 = disturbance vector 

While the matrices A, B and F are defined as follows: 

 

7. Simulation Studies 

A. Application of Model-Order Reduction 

 

Using particle swarm optimization technique for 

numerator and dominant pole retention technique for 

denominator, the second-order reduced models is as 

shown below 

 

𝐺𝑀𝑅
𝑡 (𝑠) =  

(−2.628𝑠−0.3041)

(𝑠2+1.026𝑠+0.208)
                                    (29)                       

 

 𝐺𝑀𝑅
𝑓

(𝑠) =  
(−0.1571𝑠−0.104)

(𝑠2+1.025𝑠+0.208)
                                   (30)                      

                                     

                                    

     The original model step response i.e., full-order 

model G(s) and the reduced order model (29) and 

(30). From this the third order model is equal to the 

second order model. Thus the two models are 

suitable. 

B. Application of Proposed Controller Design 

1) Controller for Tie-line power deviation:  

 

Since (29) has RHP zero at s=15.89, and therefore in 

order to factorize (29),  𝐺𝑀𝑅
𝑡 (𝑠) can be written as 
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𝐺𝑀𝑅
𝑡  (𝑆)   = 𝐺𝑀𝑅+

𝑡  (𝑆) 𝐺𝑀𝑅−
𝑡  (𝑆)  Rearrange 𝐺𝑀𝑅(𝑠) 

as  

 

 𝐺𝑀𝑅
𝑡 (𝑠) =  

(2.628𝑠+0.3041)

(𝑠2+1.206𝑠+0.208)

(−2.628𝑠−0.3041)

(2.628𝑠+0.3041)
          (31)                            

 

 

Where 𝐺𝑀𝑅
𝑡 (𝑠) is a minimum phase part 

 

  𝐺𝑚𝑟−
𝑡  (𝑆) =  (

2.628𝑠+0.3041

𝑠2+1.206𝑠+0.208
)                             (32)                          

 

and  𝐺𝑚𝑟−
𝑡  (𝑆) is a non-minimum phase part: 

 

 𝐺𝑚𝑟+
𝑡  (𝑆) = . (

−2.628𝑠−0.3041

2.628𝑠+0.3041
)                               (33) 

                  

Consider  𝜆𝑓 =  and employ (10) and (11), the TDF-

IMC of the form (7) is shown as 

 

𝑄𝑑(𝑠) =
(𝑠2+1.026𝑠+0.208)(−0.0355𝑠2+0.3878𝑠+1)

(2.628𝑠+0.3041)(0.08𝑠+1)3        (34)                  

 

Where φ, Ɵ and x are -0.0654, 1.8488 and 3 

respectively 

 

2) Controller for frequency deviation: 

 

 Since (30) has RHP zero at s=15.89, and therefore in 

order to factorize (30),  𝐺𝑀𝑅
𝑓 (𝑠) can be written as 

𝐺𝑀𝑅
𝑓

 (𝑠) =𝐺𝑀𝑅+
𝑓

 (𝑆)𝐺𝑀𝑅−
𝑓 (𝑆). Rearrange  𝐺𝑀𝑅

𝑓
(s) as 

 

 

𝐺𝑀𝑅
𝑓

 (𝑆) =  
(0.1571𝑠+0.104)

(𝑠2+1.206𝑠+0.208)

(−0.1571𝑠−0.104)

(0.1571𝑠+0.101)
           (35) 

 

 

Where 𝐺𝑀𝑅+
𝑓

 (𝑆) is a minimum phase part 

 

𝐺𝑀𝑅+
𝑓

 (𝑆)   = 
(0.1571𝑠+0.104)

(𝑠2+1.206𝑠+0.208)
                                        (36) 

 

and 𝐺𝑚𝑟−
𝑓

 (𝑆)    is a non-minimum phase part: 

 

                                           𝐺𝑀𝑅−
𝑓

 (𝑆).=

 
(−0.1571𝑠−0.104)

(0.1571𝑠+0.101)
                                  (37)                        

 

Considering 𝜆𝑓 = 0.08, and using (10) and (11), the 

TDF-IMC controller of the form (7) is given by 

 

 𝑄𝑑(𝑠) =
(𝑠2+1.026𝑠+0.208)(−0.0355𝑠2+0.3878𝑠+1)

(0.1571𝑠+0.104)(0.08𝑠+1)3        (38) 

                        

Where φ, Ɵ and x are 0.4138, -8.679 and 3 

respectively 

 

As noted before, the robust and optimal controller 

specified for particular type of disturbance (e.g., for 

an input of the plant step load will acts). 

The results of the two-area system (Δ𝑃𝑡𝑖𝑒 , change in 

tie line power and Δf, change in frequency) obtained 

through the digital computer is as shown below 

 
Fig.5. change in tie-line due to step load (0.01p.u) 

change in area 1 

 

Fig.6. change in frequency due to step load 

(0.01p.u) change in area 1 

The main theme of developing a controller is its 

ability to perform well under uncertain condition. In 

IMC design model, the stability can be done by 

choosing the value of G(s) and Q(s).  The previous 

section clearly states that IMC scheme via reduced 

order model surely creates plant mismatch which can 

forms into instability, limit operation of the control 

system.  To obtain this it needs to concentrate on 

parameters. Thus the designed compensator achieves 

very good stability by providing the robust 

techniques. 

 

 

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10
x 10

-3

 

 
Step Response

Time (sec)

A
m

p
lit

u
d
e

w ithout controller

w ith model order reduction

0 2 4 6 8 10 12 14 16 18 20
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

 

 
Step Response

Time (sec)

A
m

p
lit

u
d
e

w ithout controller 

w ith model order reduction

IJRDO-Journal Of Mechanical And Civil Engineering ISSN: 2456-1479

Volume-1 | Issue-4 | April,2015 | Paper-6 97 



                                                               

 

- -  

JOURNAL OF MECHANICAL AND CIVIL ENGINEERING  

  

8. Conclusion and Future Work 

In power systems, there is need to provide effective 

LFC techniques to counter the complexity of large 

scale systems and robustness against uncertainty in 

parameters and external conditions. In this, Particle 

Swarm Optimization and Dominant pole retention are 

combined to model order reduction techniques. It 

provides good performance in case of disturbances,  

removes plant mismatch as well as uncertainty in 

system parameters. This model removes any 

redundant information and provides computational 

efficiency. 

The work in progress is for the application of multi-

area power systems, and to examine the effective  

model-order reduction for better approximation to the 

full-order model.  
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