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Abstract 

 

Scheffe’s and Osadebe’s modeling techniques were used in formulating two mathematical 

models for the prediction of compressive strength of sand laterite blocks. The models were tested 

for adequacy using statistical tools. Comparative analyses were made on the results of 

predictions from the two models. The student’s t-test statistics proved that there is no significant 

difference between the predicted results of the two models at an α-level of 0.5. The percentage 

difference between the two model results ranges from a minimum of 0.25% to a maximum of 

6.66% which is also insignificant. These comparisons show that both models are adequate and 

any of them can be used for prediction of the compressive strength of sand -laterite blocks given 

the mix ratios or vice versa.  

Keywords: Sand-laterite blocks, compressive strength, Scheffe’s and Osadebe’s modeling 

techniques 

 

1. Introduction 

Building blocks are masonry units used mostly as walling materials in construction. They can be 

made from a wide variety of materials ranging from binder, water, sand, laterite, coarse 

aggregate, clay to admixtures. The constituent materials determine the type of block and the 

choice of these materials depends largely on their availability and affordability. Sand-laterite 

blocks are made of river sand, laterite, water and cement.  

In engineering field, blocks belong to the same family with concrete and they are expected to 

exhibit similar properties. The desired properties can only be achieved by mixing the constituent 

materials in their right proportions. The compressive strength is one of the engineering properties 

that can be used as a yardstick in measuring other properties. It shows the best possible strength 

the unit can reach in perfect conditions. 

The general approach to concrete mixture proportioning reveals that time, energy and money are 

spent in order to get the desired result (Simon et.al., 1997). In order to minimize some of these 
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limitations, an optimization procedure has been proposed. This process involves fitting empirical 

models to the data for each performance criterion. A mathematical model stands as a 

mathematical representation of a set of relationship between variables or parameters. The act of 

constructing or fashioning a model of something or finding a relationship between variables is 

called modeling. In modeling, each response (concrete property) is expressed as algebraic 

function of factors (individual component proportions). The mathematical equations (models) are 

adopted for forecasting or predictions. Prediction takes us into the future for decision making as 

we examine different responses arising from changes in controlled variables (Nwaogazie, 1999). 

A number of improved prediction techniques have been proposed by including empirical or 

computational modeling and statistical techniques. Computational techniques such as finite 

element analysis usually have complexities that are prohibiting. Statistical techniques have the 

advantage that models formulated from them can be used for prediction more quickly than any 

other technique and they are also simpler to implement in softwares (Mama and Osadebe, 2011). 

Simultaneous optimization to meet several constraints is also possible with statistical methods. 

Scheffe’s and Osadebe’s optimization theories form the basis of this work. The models 

formulated from these theories will be compared for the prediction of compressive strength of 

sand-laterite blocks 

2.  Methodology 

Analytical and experimental procedures were adopted in the course of this work. 

2.1 Henry Scheffe’s optimisation theory 

Scheffe’s optimisation method is based on simplex lattice design. A simplex lattice can be 

described as a structural representation of lines joining the atoms of a mixture. This lattice can be 

used as a mathematical space in model experiments involving mixtures by considering the atoms 

as the constituent components of the mixture. For instance in normal concrete mixture, the 

constituent elements are water, cement, fine and coarse aggregates and so normal concrete 

mixture gives a simplex of four components. Hence the simplex lattice of this four- component 

mixture is a three- dimensional solid equilateral tetrahedron. A mixture experiment involves 

mixing various proportions of two or more components to make different compositions of an end 

product (Aggarwal, 2002). Mixture components are subject to the constraint that the sum of all 

the components must be equal to one. i.e.  

 ∑Xi = 1        (1) 
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where q is the number of  components of  a mixture and i ranges from 1 to q. Xi is the proportion 

of the ith component in the mixture. This shows that if we assume the mixture to be a unit 

quantity, then the sum of all the proportions must be unity. As a result, the factor space reduces 

to a regular (q-1) dimensional simplex. The lattice part of the simplex lattice design shows that 

points are spaced regularly on the simplex. The degree of the simplex lattice is defined by the 

degree of the polynomial that may be used to fit the response surface over the simplex. 

Scheffe (1958) developed a theory for experiments with mixtures of q-components whose 

purpose is the empirical prediction of the response to any mixture of the components, when the 

response depends only on the proportion of the component and not on the total amount. He 

introduced the (q,m) simplex lattice designs. 

In a (q-1) dimensional simplex, (where q represents the number of vertices) 

(a) If q=2, we have 2 points of connectivity, giving a straight line simplex lattice (one 

dimension) 

(ii) If q=3, we have a triangular simplex lattice (two dimensions). 

(iii) If q=4, we have a tetrahedron simplex lattice (three dimensions) 

 

Considering a whole factor space in design, we will have (q,m)simplex lattice whose properties 

are defined as follows: 

(a) the factor space has uniformly spaced distribution of points. 

(b) The proportions used for each factor have m+1 equally spaced values from 0 to 1 i.e. Xij 

= 0, 1/m, 2/m, 3/m, ……,1 and all possible mixtures with these proportions for each 

component used. 

For instance, if we have (q,2) lattice, that is a second degree polynomial, (m=2), the following 

levels of each factor must be used:0, ½, and 1 respectively. For (q,3) lattice, that is a third degree 

polynomial, (m=3) the levels of each factor are: 0, 1/3, 2/3, and 1 respectively. Scheffe showed 

that the number of points in (q,m) lattice is given by 

 q+m-1Cm = q(q+1)……….(q+m-1)/m!      (2) 
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This implies that 

1. For a (3,2) lattice, the number of points equals 3(3+1)/2! = 6 

2. For a (3,3) lattice, the number of points equals 3(3+1)(3+2)/ 3! = 10 

  

 

3.  For  a (4,2) lattice, the number of points equals  4(4+1)/ 2! = 10 

                                                                                                                

 4. For a (4,3) lattice, the number of points equals 4(4+1)(4+2)/ 3! = 20 

            

The (q,m) simplex lattice designs are characterised by the symmetric arrangements of points 

within the experimental region and a well chosen polynomial equation to represent the response 

surface over the entire simplex region. The polynomial has exactly as many parameters as there 

are number of points in the associated simplex lattice design.  

Scheffe, (1958) introduced canonical polynomials to be used with his simplex lattice designs. 

These polynomials are obtained by modifying the usual polynomial model in Xi by using the 

restriction ∑Xi = 1. He assumed that a polynomial function of degree n in the q variables X1, 

X2,……. Xq will be called a ‘(q,n) polynomial’, and that it will be of the form   

       

 Y = b0 + ∑ bi Xi + ∑ bij XiXj + ∑ bijk XiXjXk+ ∑ bi1i2  ……inXi1Xi2 ……Xin  (3) 

where (1≤i≤q, 1≤i≤j≤q,  1≤i≤j≤k≤q,  i≤i1≤i2≤ ……..≤in≤q respectively) 

and b =constant coefficients 

In general, the reduced form of Eqn (3) is in the form of Eqn (4) for a mixture with four 

components (i.e. n = 4) is given by 

 Y = b0 + b1 X1 + b2X2 + b3X3 + b4X4  

 + b12X1X2 + b13X1X3+ b14X1 X4  

 + b23X2X3+ b24 X2 X4 + b34X3X4  

 + b11X1
2+ b22X2

2 + b33X3
2 + b44X4

2                                      (4) 
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Multiplying Eqn (1) by bo gives Eqn (5)  

 b0X1 + b0X2 + b0X3 + b0X4 = b0   (5) 

Multiplying Eqn (1) successively by X1, X2, X3, and X4 and rearranging gives Eqn (6) 

 X1² = X1 – X1X2 –X1X3 – X1X4 

 X2² = X2 – X1X2 –X2X3 – X2X4 

 X3² = X3 – X1X3 –X2X3 – X3X4    (6) 

 X4² = X4 – X1X4 –X2X4 – X3X4 

Substituting Eqns (5) and (6) into Eqn (4) and simplifying yields Eqn (7) 

Y = b0X1 + b0X2 + b0X3 + b0X4 + b1X1 + b2X2 + b3X3 + b4X4  

+ b12X1X2 + b13X1X3 + b14X1X4 + b23X2X3 + b24X2X4  

+ b34 X3X4 + b11 (X1 – X1X2 –X1X3 – X1X4)  

+ b22 (X2 – X1X2 –X2X3 – X2X4)  

+ b33 (X3 – X1X3 –X2X3 – X3X4) + b44(X4 – X1X4 –X2X4 – X3X4) 

Rearranging the Eqn, we have, 

Y = (b0+ b1 + b11) X1 + (b0 + b2 + b22) X2 + (b0 + b3 + b33) X3  

 + (b0 + b4 + b44) X4 + (b12 − b11 − b22) X1 X2  

 + (b13 − b11 − b33) X1 X3 + (b14 − b11 − b44) X1 X4 

  + (b23 − b22 − b33) X2 X3 + (b24 − b22 − b44) X2 X4 

 + (b34 − b33 − b44) X3 X4     (7) 

Let αi = b0 + bi +bii and αij = bij – bii – bij  (8) 

Then Eqn (8) becomes 
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 Y = α1X1 + α2X2 + α3X3 + α4X4 + α12X1X2 + α13X1X3 + α14X1X4 

 + α23X2X3 + α24X2X4 + α34X3X4               (9) 

The number of coefficients in Eqn (7) has been reduced to 10 in Eqn (9). 

In general, Eqn (9) becomes 

 Y =    ∑ αi Xi +  ∑ α ijXi Xj                                     (10) 

where 1≤i≤q, 1≤i≤j≤q            

The unknown coefficients can be determined using  

𝛼𝑖 = 𝑦𝑖  𝑎𝑛𝑑 𝛼𝑖𝑗 =  4𝑦𝑖𝑗 − 2𝑦𝑖  − 2𝑦𝑗         (11)                                                                               

It is impossible to use the normal mix ratios such as 1:2:4 or 1:3:6 at given water /cement ratio 

because of the requirement of the simplex that sum of all the components must be one. Hence it 

is necessary to carry out a transformation from actual to pseudo components. The actual 

components represent the proportion of the ingredients while the pseudo components represent 

the proportion of the components of the ith component in the mixture i.e. X1, X2, X3, X4.  

Let X represent pseudo components and Z, actual components. For component transformation we 

use the following equations: 

  X = BZ                                                                                                                                      

(12) 

 Z = AX          (13)                                                      

                              

where A = matrix whose elements are from the arbitrary mix proportions chosen when Eqn (13) 

is opened and solved mathematically. 

B = the inverse of matrix A 

Z = matrix of actual components  

X = matrix of pseudo components obtained from the lattice. 
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Expanding and using Eqns (12) and (13) the actual components Z were determined and presented 

in Table 1. 

Table 1: Pseudo and actual components for Scheffe’s (4,2) lattice for sand-laterite blocks  

Pseudo Components Response Actual Components 

No X1 X2 X3 X4 Z1 Z2 Z3 Z4 

1 1 0 0 0 Y1 0.8 1 3.2 4.8 

2 0 1 0 0 Y2 1 1 3.75 8.75 

3 0 0 1 0 Y3 1.28 1 3.334 13.336 

4 0 0 0 1 Y4 2.2 1 2.5 22.5 

5 0.5 0.5 0 0 Y12 0.9 1 3.475 6.775 

6 0.5 0 0.5 0 Y13 1.04 1 3.267 9.068 

7 0.5 0 0 0.5 Y14 1.5 1 2.85 13.65 

8 0 0.5 0.5 0 Y23 1.14 1 3.542 11.043 

9 0 0.5 0 0.5 Y24 1.6 1 3.125 15.625 

10 0 0 0.5 0.5 Y34 1.74 1 2.917 17.918 

CONTROL 

11 0.25 0.25 0.5 0 C1 1.09 1 3.4045 10.0555 

12 0.25 0.5 0.25 0 C2 1.02 1 3.5085 8.909 

13 0.67 0.33 0 0 C3 0.866 1 3.3815 6.1035 

14 0 0.67 0.33 0 C4 1.0924 1 3.6127 10.2634 

15 0.3 0.3 0.4 0 C5 1.052 1 3.4186 9.3994 

16 0.2 0.3 0.5 0 C6 1.1 1 3.432 10.253 

17 0.5 0.25 0.25 0 C7 0.97 1 3.371 7.9215 

18 0.25 0.25 0.25 0.25 C8 1.32 1 3.196 12.3465 

19 0 0.25 0.25 0.5 C9 1.67 1 3.021 16.7715 

20 0 0.25 0 0.75 C10 1.9 1 2.8125 19.0625 

Legend:  

X1 = Water/cement ratio  Z1 = Actual water/cement ratio 

X2 = Fraction of cement   Z2 = Actual cement quantity 

X3 = Fraction of river sand  Z3 = Actual river sand quantity 

X4 = Fraction of laterite   Z4 = Actual laterite quantity 
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2.2 Osadebe’s regression theory 

The formulation of the regression equation is done from first principles using the so-called 

absolute volume (mass) as a necessary condition. This principle assumes that the volume (mass) 

of a mixture is equal to the sum of the absolute volume (mass) of all the constituent components.  

Osadebe (2003) assumed that the response function, F(z) is continuous and differentiable with 

respect to its predictors, Zi.  

 F(z) = F(z (0)) + ∑ [∂F(z (0)) /∂zi ](zi –zi
(0)) + ½! ∑∑ [ ∂2 F(z(0)) / ∂zi∂zj ](zi- zi

(0)) 

 (zj –zj 
(0)) + ½! ∑∑ [∂2F(z(0)) / ∂zi

2] (zi –zi
(0))2 + …….        (14) 

where 1≤i≤4, 1≤i≤4, 1≤j≤4,and 1≤i≤4 respectively. 

By making use of Taylor’s series, the response function could be expanded in the neighbourhood 

of a chosen point: 

   Z(0) = Z1
(0), Z2

(0), Z3
(0), Z4

(0), Z5
(0)      (15) 

Without loss of generality of the formulation, the point z(0) will be chosen as the origin for 

convenience sake. It is worthy of note here that the predictor, zi is not the actual portion of the 

mixture component rather it is the ratio of the actual portions to the quantity of concrete. For 

convenience sake, let zi be the fractional portion and si be the actual portions of the mixture 

components. 

If the total quantity of concrete is designated s, then  

 ∑si = s  (16) 

For concrete of four components, 1≤i≤4 and so Eqn (16) becomes: 

             s1 + s2 + s3 + s4 = s  (17) 

If the total quantity of concrete required is a unit quantity, then Eqn (17) should be divided 

throughout by s. Hence  

s1/s + s2/s + s3/s + s4/s = s/s                       (18) 
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But, fractional portions, zi = si/s    (19) 

Substituting Eqn (19) into Eqn (18) gives Eqn (20) 

z1 + z2 + z3 + z4 = 1  (20) 

In the formulation of the regression equation, the point, z(0) was chosen as the origin. 

This implies that z(0) = 0 and so  

 z1
(0) = 0, z2

(0) = 0, z3
(0) = 0 and z4

(0) = 0 

Let  

 b0 = F(0), bi = ∂F(0) / ∂zi, bij = ∂2F(0) /∂zi∂zj, bii =∂2F(0) / ∂zi
2      

 Eqns (20) can be rewritten as 

 F(z) =  b0 + ∑bizi + ∑∑bijzizj + ∑biizi
2 + ….                                              (21) 

where 1≤i≤4 and 1≤j≤4 

Multiplying Eqn (20) by b0 gives the expression for b0 i.e. Eqn (22) 

b0 = b0z1 + b0z2 + b0z3 + b0z4                                                                                                         

 (22) 

Multiplying Eqn (20) successively by z1, z2, z3 and z4, and rearranging the products, gives 

respectively, Eqns (23)-(26) 

 z1
2 = z1 – z1z2 – z1z3 – z1z4                                                         (23)                                                                                                                                                                                                                       

z2
2 = z2 – z1z2 – z2z3 – z2z4                           (24) 

z3
2 = z3 – z1z3 – z2z3 – z3z4           (25) 

      

 z4
2 = z4 – z1z4 – z2z4 – z3z4                                                              (26) 

Substituting Eqns (22) – (26) into Eqn (21) and simplifying yields Eqn (27) 
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 Y = α1z1 + α2z2 + α3z3 + α4z4 + α12z1z2 + α13z1z3+ α14z1z4 +α23z2z3  

  + α24z2z4 + α34z3z4                                                                                                               (27) 

where  

 αi = b0 + bi + bii   and αij = bij – bii – bjj                                                      (28)            

In general, Eqn (27) is given as:  

 Y = ∑αizi+∑αij zizj   (29) 

where 1 ≤ i ≤ j ≤ 4  

Eqns (27) is the optimization model equation. 

Y is the response function at any point of observation, zi are the predictors and αi are the 

coefficients of the optimization model equations. 

Different points of observation will have different responses with different predictors at constant 

coefficients. At the nth observation point, Y(n) will correspond with Zi
(n). That is to say that:        

 Y(n)  = ∑ αizi 
(n) + ∑ αij zi

(n) zj
(n)                                                                                            

(30) 

where 1 ≤ i ≤ j ≤ 4 and n = 1,2,3, …………. 10 

Eqn (30) can be put in matrix from as  

[Y(n)] = [Z(n) ] { }    (31) 

Rearranging Eqn (31) gives: 

 { } = [Z (n) ]-1 [Y (n)]                                                                                        

  (32) 

The  values of the constant coefficients αi can be determined using Eqn 32. 

The actual mix proportions, si
(n) and the corresponding fractional portions, zi

(n) are presented on 

Table 2. 
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Table 2: Values of actual mix proportions and their corresponding fractional portions  

N S1 S2 S3 S4 RESPONSE Z1 Z2 Z3 Z4 

1 0.8 1 3.2 4.8 Y1 0.08163 0.10204 0.32653 0.4898 

2 1 1 3.75 8.75 Y2 0.06897 0.06897 0.25862 0.60345 

3 1.28 1 3.334 13.336 Y3 0.06755 0.05277 0.17594 0.70375 

4 2.2 1 2.5 22.5 Y4 0.07801 0.03546 0.08865 0.79787 

5 0.9 1 3.475 6.775 Y12 0.07407 0.0823 0.28601 0.55761 

6 1.04 1 3.267 9.068 Y13 0.07235 0.06957 0.22727 0.63082 

7 1.5 1 2.85 13.65 Y14 0.07895 0.05263 0.15 0.71842 

8 1.14 1 3.542 11.043 Y23 0.06816 0.05979 0.21178 0.66027 

9 1.6 1 3.125 15.625 Y24 0.07494 0.04684 0.14637 0.73185 

10 1.74 1 2.917 17.918 Y34 0.07381 0.04242 0.12373 0.76004 

 

Table 3: Z(n) matrix  

Z1 Z2 Z3 Z4 Z1Z2 Z1Z3 Z1Z4 Z2Z3 Z2Z4 Z3Z4 

0.0816

3 

0.1020

4 

0.3265

3 

0.4898 0.0083

3 

0.0266

6 

0.0399

8 

0.0333

2 

0.0499

8 

0.1599

3 

0.0689

7 

0.0689

7 

0.2586

2 

0.6034

5 

0.0047

6 

0.0178

4 

0.0416

2 

0.0178

4 

0.0416

2 

0.1560

6 

0.0675

5 

0.0527

7 

0.1759

4 

0.7037

5 

0.0035

6 

0.0118

8 

0.0475

4 

0.0092

8 

0.0371

4 

0.1238

1 

0.0780

1 

0.0354

6 

0.0886

5 

0.7978

7 

0.0027

7 

0.0069

2 

0.0622

5 

0.0031

4 

0.0282

9 

0.0707

3 

0.0740

7 

0.0823 0.2860

1 

0.5576

1 

0.0061 0.0211

9 

0.0413 0.0235

4 

0.0458

9 

0.1594

8 

0.0723

5 

0.0695

7 

0.2272

7 

0.6308

2 

0.0050

3 

0.0164

4 

0.0456

4 

0.0158

1 

0.0438

8 

0.1433

7 

0.0789

5 

0.0526

3 

0.15 0.7184

2 

0.0041

6 

0.0118

4 

0.0567

2 

0.0078

9 

0.0378

1 

0.1077

6 

0.0681

6 

0.0597

9 

0.2117

8 

0.6602

7 

0.0040

8 

0.0144

4 

0.045 0.0126

6 

0.0394

8 

0.1398

3 

0.0749

4 

0.0468

4 

0.1463

7 

0.7318

5 

0.0035

1 

0.0109

7 

0.0548

5 

0.0068

6 

0.0342

8 

0.1071

2 

0.0738

1 

0.0424

2 

0.1237

3 

0.7600

4 

0.0031

3 

0.0091

3 

0.0561 0.0052

5 

0.0322

4 

0.0940

4 
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2.3 Experimental procedure 

The actual components as   were used to measure out the quantities water (Z1), cement (Z2), river 

sand (Z3) and laterite (Z4) for sand-laterite blocks in their respective ratios for the various tests. A 

total of twenty mix ratios were used to produce sixty 450mm x 150mm x 225mm (solid) blocks 

that were cured and tested on the 28th day. Ten out of the twenty mix ratios were used as control 

mix ratios to produce thirty blocks for the confirmation of the adequacy of the mixture design 

model. Three blocks were tested for each point and the average taken as the result of the point. 

The failure loads were recorded and the compressive strength was obtained using  

fc = P/A              (33) 

where fc is the compressive strength 

P = failure load 

A = cross-sectional area of the specimen 

3.  Results and Discussion 

The results of the experimental and analytical procedures are shown below. 

3.1 Results of experimental procedures  

The experimental values of compressive strength of the sand-laterite blocks are presented on 

Table 4 

Table 4: Compressive strength test results of sand-laterite blocks  

Exp.  

No. 

Mix ratios (w/c:  

cement: sand: laterite) 

Replicates Mass  

(kg) 

Density 

ρ 

(kg/m3) 

Average  

Density ρ 

(kg/m3) 

Failure 

Load 

(KN) 

X-sectional 

Area 

(mm2) 

Compressive 

Strength fcu 

(N/ mm2) 

Average 

 fcu 

(N/ mm2) 

1 0.8:1:3.2:4.8 A 24.5 1613.17  180  2.667  

3.012   B 24.7 1626.34 1619.75 220 67500 3.259 

  C 24.6 1619.75  210  3.111 

2 1:1:3.75:8.75 A 22.6 1448.06  130  1.926  

2.025   B 25.1 1652.67 1569.27 140       2.074 ״ 

  C 23.8 1567.08  140  2.074 

3 1.28:1:3.334:13.3

36 

A 23.0 1514.40  100  1.482  

1.630 

  B 23.1 1520.99 1516.60 110       1.630 ״ 

  C 23.0 1514.40  120  1.778 

4 2.2:1:2.5:22.5 A 23.1 1520.99  80  1.185  

1.259   B 23.5 1547.35 1534.17 90       1.333 ״ 

  C 23.3 1534.16  85  1.259 

5 0.9:1:3.475:6.775 A 23.5 1547.35  170  2.519  
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  B 23.0 1514.40 1527.58 140       2.321 2.074 ״ 

  C 23.1 1520.99  160  2.370 

6 1.04:1:3.267:9.06

8 

A 23.0 1514.40  100  1.482  

2.074 

  B 23.1 1520.99 1516.60 180       2.667 ״ 

  C 23.0 1514.40  140  2.074 

7 1.5:1:2.85:13.65 A 23.3 1534.16  110  1.630  

1.704   B 23.3 1534.16 1527.57 115       1.704 ״ 

  C 23.0 1514.40  120  1.778 

8 1.14:1:3.542:11.0

43 

A 23.0 1514.40  140  2.074  

1.926 

  B 23.0 1514.40 1518.79 120       1.778 ״ 

  C 23.2 1527.57  130  1.926 

9 1.6:1:3.125:15.62

5 

A 24.2 1593.42  60  0.889  

1.185 

  B 24.5 1613.17 1595.61 90       1.333 ״ 

  C 24.0 1580.25  90  1.333 

10 1.74:1:2.917:17.9

18 

A 22.0 1448.56  60  0.889  

1.235 

  B 23.9 1573.66 1512.20 90       1.333 ״ 

  C 23.0 1514.40  100  1.482 

11 1.09:1:3.4045:10.

0555 

A 23.9 1573.66  120  1.778  

2.024 

  B 23.7 1560.49 1560.50 150       2.222 ״ 

  C 23.5 1547.35  140  2.074 

12 1.02:1:3.5085:8.9

09 

A 24.0 1580.25  140  2.074  

1.975 

  B 22.6 1487.21 1544.50 130       1.926 ״ 

  C 23.78 1566.05  130  1.926 

13 0.866:1:3.3815:6.

1035 

A 23.5 1547.35  170  2.519  

2.666 

  B 22.5 1481.48 1520.54 220       3.259 ״ 

  C 23.28 1532.78  150  2.222 

14 1.0924:1:3.6127:1

0.2634 

A 22.23 1463.95  140  2.074  

1.926 

  B 23.17 1525.39 1487.54 120       1.777 ״ 

  C 22.38 1473.29  130  1.926 

15 1.052:1:3.4186:9.

3994 

A 24.3 1600.00  140  2.074  

1.975 

  B 23.5 1547.35 1578.05 120       1.778 ״ 

  C 24.1 1586.83  140  2.074 

16 1.1:1:3.432:10.25

3 

A 22.3 1468.05  140  2.074  

1.876 

  B 23.2 1527.57 1496.16 120       1.778 ״ 

  C 22.67 1492.85  120  1.778 
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17 0.97:1:3.371:7.92

15 

A 23.0 1514.40  150  2.222  

2.173 

  B 23.2 1527.57 1520.99 140       2.074 ״ 

  C 23.1 1520.99  150  2.222 

18 1.32:1:3.196:12.3

465 

A 25.6 1685.60  110  1.630  

1.571 

  B 23.8 1567.08 1610.97 98       1.452 ״ 

  C 24.0 1580.25  110  1.630 

19 1.67:1:3.021:16.7

715 

A 24.1 1590.63  80  1.185  

1.210 

  B 22.6 1487.83 1546.92 80       1.185 ״ 

  C 23.7 1562.30  85  1.259 

20 1.9:1:2.8125:19.0625 A 23.8 1567.08  80  1.185  

1.136   B 23.67 1558.67 1584.35 80       1.185 ״ 

  C 24.71 1627.29  70  1.037 

 

 

The coefficients of Scheffe’s regression equation were determined using Eqn (11) and 

substituted into polynomial equation given by Scheffe (Eqn  9 ) to yield 

Y = 3.01X1 + 2.03X2 + 1.63X3 + 1.26X4  – 0.8X1X2 – 1X1X3 – 1.74X1X4  

+ 0.4X2X3 – 1.82X2X4 – 0.82X3X4       (34) 

 

Eqn (34) is the Scheffe’s mathematical model for optimisation of compressive strength of sand- 

laterite block based on 28-day strength.  

The coefficients of Osadebe regression equation were determined using Eqn (32 ) and substituted 

into polynomial equation given by Osadebe (Eqn 27 ) to yield 

Y = -6966.045Z1 – 14802.675Z2 – 418.035Z3 – 27.196Z4 + 47847.731Z5 + 1380.941Z6  

+ 7862.325Z7 + 20697.830Z8 + 13162.925Z9 + 842.339Z10    (35) 

Eqn (35) is the Osadebe’s mathematical model for optimisation of compressive strength of sand- 

laterite block based on 28-day strength.  

The two mathematical models express compressive strength as a multivariate function of 

proportions of its constituent components 
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The results predicted by Scheffe’s and Osadebe’s models for the compressive strength of sand-

laterite blocks are presented along side with the laboratory results on Tables 5  

Table 5: Compressive strength results of sand-laterite blocks from Scheffe’s model, Osadebe’s 

model and laboratory investigation 

Exp. 

No 

Mix ratios (w/c:  

cement: sand: laterite) 

Laboratory 

Compressive 

Strength 

Results 

(N/mm2)  

Scheffe’s 

Model Results 

(N/mm2) 

Osadebe’s  

Model Results 

(N/mm2) 

                               

1 0.8:1:3.2:4.8  3.012 3.009 3.012 

2 1:1:3.75:8.75 2.025 2.030 2.025 

3 1.28:1:3.334:13.3

36 

1.630 1.630 1.630 

4 2.2:1:2.5:22.5 1.259 1.260 1.259 

5 0.9:1:3.475:6.775 2.321 2.320 2.321 

6 1.04:1:3.267:9.06

8 

2.074 2.070 2.074 

7 1.5:1:2.85:13.65 1.704 1.700 1.704 

8 1.14:1:3.542:11.0

43 

1.926 1.930 1.926 

9 1.6:1:3.125:15.62

5 

1.185 1.190 1.185 

10 1.74:1:2.917:17.9

18 

1.235 1.240 1.235 

11 1.09:1:3.4045:10.0555 2.024 1.950 1.985 

12 1.02:1:3.5085:8.909 1.975 2.063 2.104 

13 0.866:1:3.3815:6.1035 2.666 2.510 2.493 

14 1.0924:1:3.6127:10.26

34 

1.926 1.986 1.991 

15 1.052:1:3.4186:9.3994 1.975 2.020 2.058 

16 1.1:1:3.432:10.253 1.876 1.938 1.971 

17 0.97:1:3.371:7.9215 2.173 2.220 2.239 

18 1.32:1:3.196:12.3465 1.571 1.621 1.568 

19 1.67:1:3.021:16.7715 1.210 1.240 1.232 

20 1.9:1:2.8125:19.0625 1.136 1.111 1.185 
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3.2  Tests of adequacy 

The two model equations were tested separately for adequacy against the controlled experimental 

results using the Fisher test statistics. Scheffe’s model results were also tested for adequacy 

against Osadebe’s model results using the student’s t-test statistics. The statistical hypothesis for 

these mathematical models is as follows: 

Null Hypothesis (H0): There is no significant difference between the experimental and the 

theoretically expected results at an α-level of 0.5. 

There is no significant difference between the two models. 

Alternative Hypothesis (H1): There is a significant difference between the experimental and 

theoretically expected results at an α-level of 0.05. 

There is a significant difference between the two models. 

3.2.1 Fisher Test 

Table 6: F-statistics test computations for Scheffe’s compressive strength model  

Response 

Symbol 

Y(observed) Y(predicted) Y(obs) - 

y(obs) 

Y(pre)-y 

(pre) 

(Y(obs) -

y(obs))
2 

(Y(pre) -

y(pre))
2 

C1 2.024 1.95 0.1708 0.0841 0.029173 0.007073 

C2 1.975 2.063 0.1218 0.1971 0.014835 0.038848 

C3 2.666 2.51 0.8128 0.6441 0.660644 0.414865 

C4 1.926 1.986 0.0728 0.1201 0.0053 0.014424 

C5 1.975 2.02 0.1218 0.1541 0.014835 0.023747 

C6 1.876 1.938 0.0228 0.0721 0.00052 0.005198 

C7 2.173 2.22 0.3198 0.3541 0.102272 0.125387 

C8 1.571 1.621 -0.2822 -0.2449 0.079637 0.059976 

C9 1.21 1.24 -0.6432 -0.6259 0.413706 0.391751 

C10 1.136 1.111 -0.7172 -0.7549 0.514376 0.569874 

∑ 18.532 18.659   1.835298 1.651143 

 Y(obs)=1.8532 y(pre)=1.8659     

Legend:    y =∑Y/n 

 where Y is the response and n the number of responses. 

The variance is 

 S2 = [1/(n−1)][∑ (Y-y)2]                (36) 
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Using Eqn (36), S2
(obs) and  S2

(pre) are calculated as follows: 

S2
(obs) = 1.835298/9 = 0.2039 and S2

(pre) = 1.651143/9 = 0.183 

The test statistics is given by 

 F = S1
2/ S2

2                  (37) 

where S1
2 is the larger of the two variances 

With reference to Eqn (37), S1
2 = 0.2039 and S2

2 = 0.183 

Therefore, F = 0.2039/0.183 = 1.114 

From standard Fisher table, F0.95(9,9) = 3.25 which is higher than the calculated F-value. Hence 

the regression equation is adequate. 

Table 7: F-statistics test computations for Osadebe’s compressive strength model  

Response 

Symbol 

Y(observed) Y(predicted) Y(obs) - 

y(obs) 

Y(pre)-y (pre) (Y(obs) -

y(obs))
2 

(Y(pre) -y(pre))
2 

C1 2.024 1.985 0.1708 0.1024 0.029173 0.010486 

C2 1.975 2.104 0.1218 0.2214 0.014835 0.049018 

C3 2.666 2.493 0.8128 0.6104 0.660644 0.372588 

C4 1.926 1.991 0.0728 0.1084 0.0053 0.011751 

C5 1.975 2.058 0.1218 0.1754 0.014835 0.030765 

C6 1.876 1.971 0.0228 0.0884 0.00052 0.007815 

C7 2.173 2.239 0.3198 0.3564 0.102272 0.127021 

C8 1.571 1.568 -0.2822 -0.3146 0.079637 0.098973 

C9 1.21 1.232 -0.6432 -0.6506 0.413706 0.42328 

C10 1.136 1.185 -0.7172 -0.6976 0.514376 0.486646 

∑ 18.532 18.826   1.835298 1.618342 

 y(obs)=1.8532 Y(pre)=1.8826     

Legend:    y =∑Y/n 

 where Y is the response and n the number of responses. 

Using Eqn (36), S2
(obs) and S2

(pre) are calculated as follows: 

S2
(obs) = 1.835298/9 = 0.2039 and S2

(pre) = 1.618342/9 = 0.1798 

With reference to Eqn (37), S1
2 = 0.2039 and S2

2 = 0.1798 
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Therefore, F = 0.2039/0.1798 = 1.134 

From standard Fisher table, F0.95(9,9) = 3.25 which is higher than the calculated F-value. Hence 

the regression equation is adequate. 

The fisher test statistics used for this test proved that there is no significant difference between 

the experimental and the theoretically expected results at an α-level of 0.5. 

 

3.2.2  Student’s t-test 

Scheffe’s model results were tested for adequacy against Osadebe’s model results using the 

student’s t-test statistics as follows: 

Table 8: T-statistics test computations  

N CN I J аi аij аi
2 аij

2 ε y(observed)   

Scheffe

’s 

y(predicted

) 

Osadeb

es 

∆Y t 

 

 

 

1 

 

 

 

C1 

1 

1 

1 

2 

2 

3 

4 

2 

3 

4 

3 

4 

4 

- 

-0.125 

-0.125 

-0.125 

-0.125 

-0.125 

0 

0 

0.25 

0.25 

0 

0.5 

0 

0 

- 

0.0156 

0.0156 

0.0156 

0.0156 

0.0156 

0 

0 

0.0625 

0.25 

0 

0.25 

0 

0 

0 

 

 

 

 

 

 

 

 

0.6406 

 

 

 

 

 

 

 

 

1.950 

 

 

 

 

 

 

 

 

1.985 

 

 

 

 

 

 

 

 

0.035 

 

 

 

 

 

 

 

 

0.064 
     ∑ 0.0781 0.5625 

Similarly 

2  - - - - - - 0.625 2.063 2.104 0.041 0.075 

3  - - - - - - 0.963 2.510 2.493 0.017 0.028 

4  - - - - - - 0.899 1.986 1.991 0.005 0.008 

5  - - - - - - 0.669 2.020 2.058 0.038 0.069 

6  - - - - - - 0.650 1.938 1.971 0.033 0.060 

7  - - - - - - 0.609 2.220 2.239 0.019 0.035 

8  - - - - - - 0.484 1.621 1.568 0.053 0.102 

9  - - - - - - 0.609 1.240 1.232 0.008 0.015 

10  - - - - - - 0.734 1.111 1.185 0.074 0.131 

 

T-value from table 

For a significant level, α = 0.05, tα/l(ve) = t 0.05/10(9) = t 0.005(9) = 3.250 (from standard t-table) 
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This value is greater than any of the t-values obtained by calculation (as shown in Table 8). 

Therefore, we accept the Null hypothesis. There is no significant difference between the two 

models. 

The student’s t-test statistics used for this test proved that there is no significant difference 

between the two models. So the two models can be used for the prediction of compressive 

strength of sand-laterite blocks. 

 

3.3  Comparison of strength values predictable by two optimization models 

The results from the models for compressive strength test result of sand-laterite blocks (chosen 

samples) of the controlled points are presented on Table 9 

Table 9: Comparison of compressive strength test results of sand-laterite blocks for Scheffe’s 

model and Osadebe’s model and percentage difference 

Ex

pN

o 

Mix ratios (w/c:  

cement: sand: 

laterite) 

Laboratory 

Compressi

ve Strength 

Results 

(N/mm2)  

 

Scheffe’s 

Model 

Compressi

ve Strength 

Results 

(N/mm2) 

Osadebe’s 

Model 

Compressi

ve Strength 

Results 

(N/mm2) 

                               

Percentage 

Difference 

btw Lab. & 

Scheffe’s 

Results (%) 

          

Percenta

ge 

Differenc

e btw 

Lab & 

Osadebe’

s Results 

(%) 

 

Percentage 

Difference 

btw 

Scheffe’s 

& 

Osadebe’s 

Model 

Results(%) 

11 1.09:1:3.4045:10.0

555 

2.024 1.950 1.985 3.66 1.93 1.79 

12 1.02:1:3.5085:8.90

9 

1.975 2.063 2.104 4.45 6.53 1.99 

13 0.866:1:3.3815:6.1

035 

2.666 2.510 2.493 5.85 6.49 0.68 

14 1.0924:1:3.6127:10

.2634 

1.926 1.986 1.991 3.12 3.37 0.25 

15 1.052:1:3.4186:9.3

994 

1.975 2.020 2.058 2.28 4.20 1.88 

16 1.1:1:3.432:10.253 1.876 1.938 1.971 3.30 5.06 1.70 

17 0.97:1:3.371:7.921

5 

2.173 2.220 2.239 2.16 3.04 0.86 

18 1.32:1:3.196:12.34

65 

1.571 1.621 1.568 3.18 0.19 3.27 

19 1.67:1:3.021:16.77

15 

1.210 1.240 1.232 2.48 1.82 0.65 
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20 1.9:1:2.8125:19.06

25 

1.136 1.111 1.185 2.20 4.31 6.66 

 

Table 9 shows compressive strength test results from laboratory/experimental investigation, 

Scheffe’s model and Osadebe’s model. A comparison of predicted results from Scheffe’s model 

with the laboratory results shows that the percentage difference ranges from a minimum of 

2.16% to a maximum of 5.85% which is insignificant. A comparison of predicted results from 

Osadebe’s model with the laboratory results shows that the percentage difference ranges from a 

minimum of 0.19% to a maximum of 6.53% which is also insignificant.  

The percentage difference between Scheffe’s model result and Osadebe’s model result (for 

compressive strength of sand-laterite blocks) ranges from a minimum of 0.25% to a maximum of 

6.66% which is insignificant. This comparison shows that both models are adequate and any of 

them can be used for optimisation of the block properties. However, the following differences 

can be noted: 

(i) Scheffe’s model programs can predict the maximum value of any property while 

Osadebe’s model program cannot give the maximum value.  

(ii) In formulation of Scheffe’s model, the mixture components are subject to the constraint 

that the sum of all the components must be equal to one whereas Osadebe’s model is not subject 

to this constraint. Consequently, component transformation is required in Scheffe’s model 

development while the transformation is not needed in Osadebe’s case. This makes Osadebe’s 

optimization technique easier to apply because it uses actual mix ratios. 

(iii) Any value of property higher than the maximum in the case of Scheffe’s model program 

can be specified as input in Osadebe’s model program to obtain the mix ratios that can yield that. 

This is not obtainable with Scheffe’s model program. 

 

4.  CONCLUSION 

1. Two mathematical models for the prediction of compressive strength of sand laterite blocks 

were formulated using Scheffe’s and Osadebe’s modeling techniques. 

2. The models were found to be adequate using the Fisher test. 

3. Comparative analyses were made on the results of predictions from the two models.  

IJRDO-Journal of Mechanical And Civil Engineering                              ISSN: 2456-1479  

Volume-3 | Issue-5 | May,2017 | Paper-1 20         



4. The student’s t-test statistics proved that there is no significant difference between the 

predicted results of the two models at an α-level of 0.5.  

5. The percentage difference between the two model results ranges from a minimum of 0.25% to 

a maximum of 6.66% which is insignificant.  

6. These comparisons show that both models are adequate and any of them can be used for 

prediction of the compressive strength of sand -laterite blocks given the mix ratios or vice versa.  
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