

DESIGN OF RC DEEP BEAMS AS PER INDIAN, EUROPEAN AND AMERICAN CODES OF PRACTICE

Mr.K.Dinesh kumar * and Ms.S.Subathra *

**Assistant Professor of Civil Engineering, New Prince Shri Bahvani College of Engineering and Technology, Chennai, Tamilnadu, India

Abstract:

Provisions of Indian (IS 456: 2000), European (EC2 - 1992) and American (ACI - 318) codes of practice for the design of RC deep beams have been critically studied and reported. As per the recommendations of these codes, RC deep beams have been designed adopting limit state method. The quantities of concrete and steel and the total cost of deep beams for three different spans have been calculated and are compared using bar chart.

Keywords: Limit state design, RC deep beam, limiting moment of resistance, side face reinforcement.

"1. Introduction"

Design of a reinforced concrete structure is not easily reduced to a science, since it implies functional and aesthetic factors, as well as technical and economic ones. Design is a matter of talent, technical knowledge and imagination. As of today, a reinforced concrete structure should satisfy the requirements of safety or reliability, serviceability, durability, economy and aesthetics. Comparison of various building code requirements reveals significant differences between practices adopted by various countries. In this paper, RC deep beams have been designed as per the following three codes of practice and the relative quantities of steel are compared.

"Indian Standard Plain and Reinforced Concrete - Code of Practice IS: 456: 2000"

ISSN: 2456-1479

- "Manual for the design of reinforced concrete building structures to EC2 – 1992"
- ➤ "ACI 318: Building Code Requirements for Reinforced Concrete (ACI 318 - 95) and Commentary (ACI 318R - 95)"

"2. Critical parameters for the design of RC deep beams as per the three codes of practice"

The Indian and European codes of practice follow SI units whereas the American code of practice followsFPS units. The following are the different parameters required for the design of RC beams;

Table 1: Critical parameters for the design of RC deep beams as per the three codes of practice

Parameters	IS 456:2000	EC2-1992	ACI-318		
Unit weight of concrete	25 kN/m³	24 kN/m³	$145 \text{ lb/ft}^3 = 22.78 \text{kN/m}^3$		
Load combination (DL+LL) for limit state design	1.5(DL+LL)	1.35DL+1.5LL	1.4DL+1.7LL		
Effective Span/ Overall d	lepth ratio permitted:				
i) Simply supported	< 2	<2	<1.25		
ii) Continuous	<2.5	<2.5	<2.5		
	Lever	Arm			
i) Simply supported	$z = 0.2 (l+ 2D)$ when $l \le l/D \le 2$ (or) $z = 0.6 l$ when $l/D < 1$	$z = 0.2 (l+ 2D)$ when $l \le l/D \le 2$ (or) $z = 0.6 l$ when $l/D < 1$	$z = 0.2 (l+ 2D)$ when $l \le l/D \le 2$ (or) $z = 0.6 l$ when $l/D < 1$		
ii) Continuous	$z = 0.2(l+1.5D)$ when $l \le l/D \le 2.5$ (or) $z = 0.5l$ when $l/D < 1$	$z = 0.2(I+1.5D)$ when $l \le l/D \le 2.5$ (or) $z = 0.5l$ when $l/D < 1$	$z = 0.2(I+1.5D)$ when $l \le l/D \le 2.5$ (or) $z = 0.5l$ when $l/D < 1$		

IJRD

Effective span of the	i) c/c distance between	Clear distance	i) c/c distance between		
beam	supports	between the faces of	supports		
beam	ii) 1.15 x clear span	supports + one-third of	ii) 1.15 x clear span		
	whichever is smaller	their width	whichever is smaller		
Positive Reinforcement	. Mue vm	Mu			
1 ositive Kennor Cement	$A_{st} = \frac{A_{st} + A_{st}}{fv \cdot z}$	$A_{st} = \frac{Mu}{0.87 \text{ fy} \cdot z}$	$A_{st} = \rho bD$		
	3 -	55.0	ρ =0.85 β (fc/fy)		
			$(\frac{87000}{87000+fy})$		
Zana e CD andla	0.25D 0.051	0.25D 0.051			
Zone of Depth	0.25D - 0.051	0.25D - 0.051	0.25D - 0.051		
Development length	$0.8 \left(\frac{\emptyset \sigma_s}{4 \tau_{hd}} \right)$	$0.8\left(\frac{\emptyset \sigma_s}{\bullet}\right)$	0.8 (^{Ø σ_s} / _{4 τ h.s})		
1	0.8 (4 T bd)	0.8 (4 Tbd)	0.8 (4 Tbd)		
	Side face rei	nforcement			
Condition	D > 750mm	D > 1000mm	D > 36 in = 914.4 mm		
Area of vertical	0.0012 gross area	$0.6b (0.83d - x) / \sigma_s$	0.012b (d - 30)		
reinforcement					
Area of horizontal	0.002 gross area	0.002 gross area	0.0025 b S_2		
reinforcement			$S_2 = d/3$		
Maximum spacing	i) 0.75d(in mm)	300mm	i) 3d (in inch)		
	ii) 300mm whichever		ii)18 inch whichever is		
	is less		less		

By using the above parameters, the design of RC deep beams have been carried out and the results are given below.

"3. Results and discussions"

The results for the design of RC deep beams of span 3.5m, 4m and 4.5m to carry working live load of 300kN/m are tabulated.

ISSN: 2456-1479

Table 2: AS PER IS 456:2000

Clear span (m)	3.5			4			4.5		
Description	Main reinforc	Side face reinforcement		Main reinforce	Side face reinforcement		Main reinforce	Side face reinforcement	
	ement Hor	Horizo ntal	Verti cal	ment	Horizo ntal	Verti cal	ment	Horizo ntal	Verti cal
Diameter (mm)	12	8	8	12	8	8	12	8	8
Numbers	12	18	14	14	18	16	17	18	18
Length (m)	3.45	3.45	2.95	3.95	3.95	2.95	4.45	4.45	2.95
Total length (m)	41.4	62.1	41.3	55.3	71.1	47.2	75.65	80.1	53.1
Weight of steel (kg/m)	0.878	0.39	0.39	0.878	0.39	0.39	0.878	0.39	0.39
Total weight of steel (kg)	36.35	24.22	16.1	48.55	27.73	18.4	66.42	31.24	20.7
Total weight of steel (N)	751.97		928.53		1160.81				
Volume of concrete (m³)		3.15			3.6			4.05	

TABLE 3: AS PER EC2-1992

Clear span (m)	3.5			4			4.5		
		Side face		Side face			Side face		face
	Main	reinforc	ement	Main	reinforcement		Main	reinforcement	
	reinforc	Horizo	Verti	reinforce	Horizo	Verti	reinforce	Horizo	Verti
Description	ement	ntal	cal	ment	ntal	cal	ment	ntal	cal
Diameter (mm)	12	8	8	12	8	8	12	8	8
Numbers	16	18	20	18	18	20	20	18	20
Length (m)	3.45	3.45	2.95	3.95	3.95	2.95	4.45	4.45	2.95
Total length (m)	55.2	62.1	59	71.1	62.1	59	89	62.1	59
Weight of steel									
(kg/m)	0.878	0.39	0.39	0.878	0.39	0.39	0.878	0.39	0.39
Total weight of									
steel (kg)	48.46	24.22	23.1	62.42	24.22	23.1	78.14	24.22	23.1
Total weight of steel (N)	938.39		1075.29		1229.45				
Volume of concrete (m³)		3.15			3.6			4.05	

TABLE 4: AS PER ACI-318

Clear span (m)		3.5				4.5			
		Side face			Side face		1	Side face	
	Main	reinforc	ement	Main	reinforcement		Main	reinforcement	
	reinforc	Horizo	Verti	reinforce	Horizo	Verti	reinforce	Horizo	Verti
Description	ement	ntal	cal	ment	ntal	cal	ment	ntal	cal
Diameter (mm)	12.7	9.525	9.525	12.7	9.525	9.525	12.7	9.525	9.525
Numbers	17	18	20	20	18	20	22	18	20
Length (m)	3.45	3.45	2.95	3.95	3.95	2.95	4.45	4.45	2.95
Total length (m)	58.65	62.1	59	79	62.1	59	97.9	62.1	59
Weight of steel									
(kg/m)	0.983	0.553	0.55	0.983	0.553	0.55	0.983	0.553	0.55
Total weight of									
steel (kg)	57.65	34.34	32.6	77.65	34.34	32.6	96.23	34.34	32.6
Total weight of									
steel (N)	1222		1418.13		1600				
Volume of									
concrete (m³)		3.15			3.6			4.05	

The reinforcement details for design of deep beam of span 3.5m as per IS456:2000 is shown below.

ISSN: 2456-1479

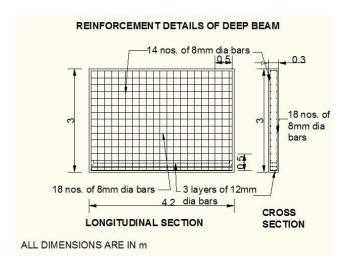
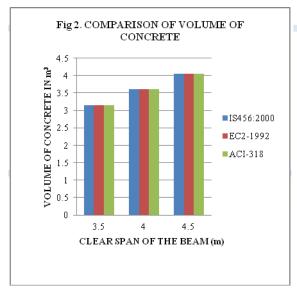
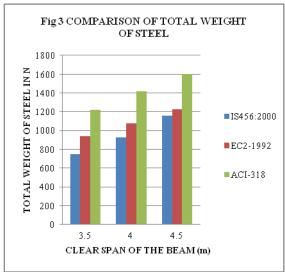




Fig. 1 Reinforcement details of Deep Beam of span 3.5m

The volume of concrete and total weight of steel for each span are compared using the following bar charts.

"4. CONCLUSIONS ON DESIGN OF DEEP BEAMS"

The required volume of concrete increases due to the increase in span of the beam.

ISSN: 2456-1479

Μ

Μ

M

Μ

 V_u

 V_s

 V_{R}

 V_u

S,

 τ_v

 τ_c

- The weight of steel required is the highest for all the beams when designed as per ACI code. This is mainly due to the number of bars and the spacing to be provided for main and side face reinforcement as per ACI code.
- Thus, the cost of the beam is less if designed as per Indian standards when compared to European and American Standards and is more if American code is adopted.

"5. LIST OF SYMBOLS"

 A_{st}

В

- Area of tension reinforcement

A_{SV} - Area of vertical stirrups

a - Stress block depth

- Width of the beam

D - Overall depth of the beam

DL - Dead Load

D - Effective depth of the beam

d' - Clear cover of the beam

fc - Characteristic compressive strength of concrete in N/mm²

f Specified compressive strength of concrete in psi

fy - Characteristic compressive strength of steel in N/mm²

L - Clear span of the beam

Leff - Effective span of the beam

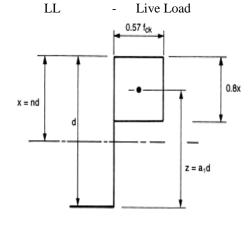


Fig. (4) Stress block diagram as per EC2-1992

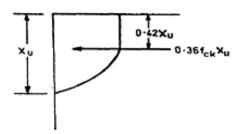


Fig. (5) Stress block diagram as per IS456:2000

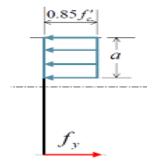


Fig. (6) Stress block diagram as per ACI- 318

"6. REFERENCES"

- "Indian Standard Plain and Reinforced Concrete – Code of Practice IS: 456: 2000"
- ➤ "Manual for the design of reinforced concrete building structures to EC2 1992"
- ACI 318: Building Code
 Requirements for Reinforced
 Concrete (ACI 318 95) and
 Commentary (ACI 318R 95)"
- ➤ "Reinforced Concrete Design" by Kenneth leet, Dionoso Bernal.
- > "Design of Reinforced Concrete Structures" by N.KrishnaRaju
- ➤ "Limit State Design of Reinforced Structures" by P.C.Varghese.

ISSN: 2456-1479