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Abstract: 
Our goal was to create a new tangent bundle space from a new point and two curves using the MATLAB program. We 

used the applied mathematical approach, and we arrived at an accurate model of the tangent bundle space by building 

an algorithm that implements the solution and displays the results and represents them graphically with ease and with 

high accuracy. This is what MATLAB makes a suitable working environment for dealing with tangent bundles. Given the 

importance of tangent bundles in modern engineering and physical sciences, this algorithm can be developed to include 

the most important areas of tangent bundles instead of the complex traditional method. 
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1. INTRODUCTION: 

The tangent bundles play an important role in many fields of modern engineering, physics, technology, and astronomy. 

Therefore, it was necessary to highlight them and implement their solution using computing programs because they give 

accurate and fast results, and they are also possible to represent graphically in a multi-dimensional space instead of the 

traditional method. The complex was a scientific and powerful reason to study and solve it using modern mathematical 

methods such as MATLAB and other methods that we can also use to give accurate and fast results. 

 

2. The Geometry of Curves 

Definition (2.1): A curve in 3-space 𝑅3 is a continuous mapping 𝛼: 𝐼 → 𝑅3 where 𝐼 is some type of  interval  (e.g., 

(0, 1), (𝑎, 𝑏), [𝑎, 𝑏], (−∞, 𝑎], [0, 𝐼] etc.) on the real line  𝑅. Because the range of  a is   𝑅3, a's output has three 

coordinates. We then write, for  𝑡 ∈  𝑙, a parametrization for 𝛼, 

𝛼(𝑡) = (𝛼1(𝑡), 𝛼2(𝑡), 𝛼3(𝑡))              (1) 

Where the  𝛼𝑖 are themselves functions  𝛼𝑖  ∶  𝐼 →  𝑅 . A useful way to think about curves is to consider 𝑡 to be time and 

𝛼(𝑡) to be the path of a particle in space. We say a is differentiable or smooth if each coordinate function 𝛼𝑖 is 

differentiable as an ordinary real-valued function of  𝑅. 

The velocity vector of α at t0 is defined to be 

 

�̀�(𝑡) = (
𝑑𝛼1

𝑑𝑡
|
𝑡=𝑡0

,
𝑑𝛼2

𝑑𝑡
|
𝑡=𝑡0

,
𝑑𝛼3

𝑑𝑡
|
𝑡=𝑡0

)        (2) 

 

Where 
𝑑𝛼𝑖

𝑑𝑡
 is the ordinary derivative and |𝑡=𝑡0 denotes evaluation of the derivative at  𝑡 =  t0. We shall also write 

𝑑𝛼𝑖

𝑑𝑡
(t0) for this evaluation when it is convenient. In order to interpret �̀� geometrically. [8,p(1)] 

 

Example (2.2): The parameterized differentiable curve given by 

 

𝛼(𝑡) =  (𝑎 𝑐𝑜𝑠 𝑡, 𝑎 𝑠𝑖𝑛 𝑡, 𝑏𝑡), 𝑡 ∈  𝑅, 
 

Has as its trace in 𝑅3 a helix of pitch 2𝜋𝑏 on the cylinder 𝑥2  +  𝑦2  =  𝑎2. The parameter 𝑡 here measures the angle 

which the 𝑥 axis makes with the line joining the origin 0 to the projection of the point 𝛼(𝑡) over the 𝑥𝑦 plane (see Fig 

No (1)) 

 
Fig No (1): The parameterized differentiable curve. 

 

Definition (2.3):  A parameterized differentiable curve 𝛼: 𝐼 →  𝑅3 is said to be regular if �̀�(𝑡) ≠  0 for all 𝑡 ∈
 𝐼.[12,P(2)] 

 

Definition (2.4):  The velocity vector �̀�(t0) to a at t0 is a tangent vector to a at 𝛼(𝑡). Notice that we obtain a vector with 

a precise length, not a line. Remember that a vector  𝑣 =  (𝑣1 ,  𝑣2, 𝑣3 )  ∈ 𝑅3, has a length given by the Pythagorean 

theorem 

 

|𝑣| = √(𝑣1)2 + ( 𝑣2)2 + (𝑣3)2           (3)             [8,p(1)] 

 

3. The Tangent Bundles 

The collection of tangent spaces to a manifold has the structure of a vector bundle over the manifold, called the tangent 

bundle. 
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Definition (3.1): Let 𝑀 ⊂  𝑅𝑘 be a smooth m-dimensional manifold and fix a point 𝑝 ∈  𝑀. A vector 𝑣 ∈  𝑅𝑘 is called 

a tangent vector of 𝑀 at 𝑝 if there is a smooth curve 𝛾 ∶  𝑅 →  𝑀 such that 𝛾(0)  =  𝑝, 𝛾˙(0)  =  𝑣. The set 

 

𝑇𝑝𝑀 ∶=  {𝛾˙ (0) | 𝛾 ∶  𝑅 →  𝑀 𝑖𝑠 𝑠𝑚𝑜𝑜𝑡ℎ, 𝛾(0)  =  𝑝}  (4) 

 

Of tangent vectors of 𝑀 at 𝑝 is called the tangent space of 𝑀 at 𝑝 (see 

Fig No(2). 

 
Fig No (2): The Tangent Space 𝑇𝑝𝑀 [7, p(12)] 

 

Definition (3.2): A differentiable curve through a point 𝑝 ∈  𝑁 is a differentiable curve 𝑎: (−1,1) → 𝑁 such that  

𝑎(0)  = 𝑝. It will be denoted by  𝑎(𝑡), with 𝑡 ∈ (−1,1). When 𝑡 varies in this interval, a 1-dimensional continuum of 

points is obtained on 𝑁. In a chart(𝑈, 𝜓) around 𝑝 these points will have coordinates 

𝑎𝑖(𝑡) = 𝑢𝑖 ∘ 𝜓[𝑎(𝑡)].        (5) 

 

Definition (3.3): Let 𝑓 be any differentiable real function on  𝑈 ∋ 𝑝, 

𝑓: 𝑈 → 𝐸1, 
 

As in Figure 6.2. The vector 𝑉𝑝 tangent to the curve 𝑎(𝑡) at point 𝑝 is given by 

 

𝑉𝑝(𝑓) =
𝑑

𝑑𝑡
[(𝑓 ∘ 𝑎)(𝑡)]𝑡=0 = [

𝑑𝑎𝑖

𝑑𝑡
]
𝑡=0

=
𝜕𝑓

𝜕𝑎𝑖
      (6) 

 

 

 

Notice that 𝑉𝑝 is quite independent of   𝑓, which is arbitrary. It is, as 

 

 
Fig No (3): A Curve Maps 𝐸1 into 𝑁, and a Real Function Proceeds in the Converse Way. The Definition of Vector 

uses the Notion of Derivative on  𝐸1. [13, p(164)]. 

 

Definition (3.4): A tangent vector at 𝑚 ∈  𝑀 ⊂ 𝐸𝑟  is a vector 𝑣 in 𝐸𝑟  of the form 𝑣 =  𝑦′ (𝑡0) for some path 𝑦 = 𝑦 (𝑡)  
in 𝑀 through 𝑚 and 𝑦(𝑡0)  =  𝑚. 

 

Example (3.5): Let 𝑀 be the surface 𝑦3 = 𝑦1
2 + 𝑦2

2, which we parameterize by: 

𝑦1 = 𝑥
1 

𝑦2 = 𝑥
2 

𝑦3 = ( 𝑥
1)2 + (𝑥2)2 

This corresponds to the single chart (𝑈 = 𝑀; 𝑥1, 𝑥2), where 
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𝑥1 = 𝑦1 and𝑥2 = 𝑦2. 

To specify a tangent vector, let us first specify a path in 𝑀, such as 

𝑦1 = √𝑡 sin 𝑡 

𝑦2 = √𝑡 𝑐𝑜𝑛 𝑡 
𝑦3 = 𝑡 

 

This gives the path shown in the figure. 

 

 
Fig No (4): A Tangent Vector Field 

 

Now we obtain a tangent vector field along the path by taking the derivative: 

 

(
𝑑𝑦1
𝑑𝑡
,
𝑑𝑦2
𝑑𝑡
,
𝑑𝑦3
𝑑𝑡
)  =  (√𝑡 𝑐𝑜𝑠𝑡 + 

𝑠𝑖𝑛𝑡

2√𝑡
, −√𝑡 𝑠𝑖𝑛𝑡 +  𝑐𝑜𝑠𝑡2𝑡, 1). 

 

(To get actual tangent vectors at points in 𝑀, evaluate this at a fixed point 𝑡0.) 
Note that we can also express the coordinates 𝑥𝑖 in terms of t: 

 

𝑥1 = 𝑦1 = √𝑡 𝑠𝑖𝑛𝑡 
 

𝑥2 = 𝑦2 = √𝑡 𝑐𝑜𝑠𝑡 
 

Is described a path in some chart (that is, in coordinate space) rather than on the manifold itself. We can also take the 

derivative, 

(
𝑑𝑥1

𝑑𝑡
,
𝑑𝑥2

𝑑𝑡
)  =  (√𝑡 𝑐𝑜𝑠𝑡 +  

𝑠𝑖𝑛𝑡

2√𝑡
, −√𝑡 𝑠𝑖𝑛𝑡 +  

𝑐𝑜𝑠𝑡

2√𝑡
). 

 

We also think of this as the tangent vector, given in terms of the local coordinates. A lot more will be said about the 

relationship between the above two forms of the tangent vector below. [14, p(14)] 

 

Definition (3.6): Let 𝑓 be a differentiable real-valued function on 𝑅3, and let 𝑣𝑝 be a tangent vector to 𝑅3. Then the 

number 

 

𝑣𝑝[𝑓] =
𝑑

𝑑𝑡
(𝑓(𝑝 + 𝑡𝑣))𝑡=0              (7) 

 

Is called the derivative of 𝑓 with respect to 𝑣𝑝 . 

This definition appears in elementary calculus with the additional restriction that 𝑣𝑝  be a unit vector. Even though we 

do not impose this restriction, we shall nevertheless refer to 𝑣𝑝[𝑓] as a directional derivative. 

For example, we compute 𝑣𝑝[𝑓]  for the function  𝑓 =  𝑥2𝑦𝑧, with 

𝑝 =  (1, 1, 0) and  𝑣 =  (1, 0, −3). Then 

𝑝 + 𝑡𝑣 = (1, 1, 0) + 𝑡(1, 0, −3) = (1 + 𝑡, 1, −3𝑡) 
 

Describes the line through 𝑝 in the 𝑣 direction. Evaluating 𝑓 along this line, we get Now, hence at  𝑡 =  0,  we find 

𝑣𝑝[𝑓] = −3 . Thus, in particular, the function 𝑓 is initially decreasing as 𝑝 moves in the 𝑣 direction. The following 

lemma shows how to compute 𝑣𝑝[𝑓] in general, in terms of the partial derivatives of  𝑓 at the point 𝑝. [3, p(12)] 

 

Definition (3.7): The set of all tangent vectors at p is written an  𝑇𝑝𝑀. The tangent bundle TM is the disjoint union of all 

the tangent spaces for all points in M. 

 

TM ≔ ⋃ TpMp∈M                (8)           [6, p(49)] 
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Definition (3.8): Let 𝑀 be a 𝐶𝑘-manifold, let 𝐼 ⊂ 𝑅 be an open interval and let 𝛾: 𝐼 → 𝑀 be a 𝐶𝑘-curve. for every 𝑡 ∈ 𝐼, 
the tangent vector 𝛾(𝑡) of 𝛾 at 𝑡 is an element of the tangent space 𝑇𝛾(𝑡) 𝑀 . Hence, while 𝑡 runs through  𝐼, 𝛾(𝑡) runs 

through the tangent spaces along 𝛾 , see Fig No (3.6) 

 
Fig No (5): Tangent Vectors Along a Curve 𝛾 in 𝑀 

 

To follow the tangent vectors along 𝛾 it is convenient to consider the totality of all tangent spaces of M. This leads to the 

notion of tangent bundle of a manifold M, denoted by TM. As a set, TM is given by the disjoint union of the tangent 

spaces at all points of  M. [5, p(53)] 

 

Proposition (3.9): A smooth map 𝑓 ∶  𝑀 →  𝑁 induces a smooth map 𝐷𝑓 ∶  𝑇𝑀 →  𝑇𝑁 such that: 

i. 𝐷𝑓 ( 𝑇𝑝𝑀) ⊂  𝑇𝑓(𝑝)𝑁, ∀𝑝 ∈ 𝑀 

ii. The restriction to each tangent space 𝐷𝑝𝐹 ∶  𝑇𝑝𝑀 → 𝑇𝑓(𝑝)𝑁 is linear: The map 𝐷𝑓 is called the differential of  𝑓 , 

and one often uses the alternate notation  𝑓∗  =  𝐷 𝑓 .[9, p(28)] 

 

Proposition (3.10): The tangent bundle 𝑇𝑀 of a manifold 𝑀 is second countable. 

Proof: Let {𝑈𝑖}𝑖=1
∞  be a countable basis for 𝑀 consisting of coordinate open sets. Let ∅𝑖 be the coordinate map on 𝑈𝑖 . 

Since 𝑇𝑈𝑖   is homeomorphic to the open subset ∅𝑖(𝑈𝑖)  ×  𝑅
𝑛 of 𝑅2𝑛 and any subset of a Euclidean space is second 

countable, 𝑇𝑈𝑖   is second countable. For each 𝑖, choose a countable basis {𝐵𝑖,𝑗}𝑗=1
∞  for 𝑇𝑈𝑖. Then {𝐵𝑖,𝑗}𝑗=1

∞  is a countable 

basis for the tangent bundle. 

 

Proposition (3.11): The tangent bundle 𝑇𝑀 of a manifold 𝑀 is Hausdorff. .[10, p(132)] 

 

Definition (3.12): The triple (𝑇𝑀,𝑀, 𝜋) is called the tangent bundle of  𝑀. 

𝑇𝑀 is called the total space or the bundle manifold, 𝑀 the base manifold and 𝜋 the natural projection. For 𝑚 ∈
𝑀, 𝜋−1(𝑚) ≡ 𝑇𝑚𝑀 is called the fibre over 𝑚. The vector space r is called the typical fibre and the pairs (𝑈𝛼 , 𝜒𝛼) are 

called local trivializations of  𝑇𝑀 over  𝑈𝛼. [5, p(55)] 

 

Example (3.13): 

i. A simple example of a nontrivial vector bundle is the infinite Möbius band M: Consider the quotient space of 𝑅 × 𝑅 

by the equivalence relation (𝑡, 𝑠) ∼ (𝑡 + 1,−𝑠).The first projection gives rise to a map 𝑝:𝑀 → 𝑆1,which we claim is 

a nontrivial real vector bundle of rank 1 over 𝑆1.It is easy to see that complement of the 0-section in the total space 

of this bundle is connected. Therefore, the bundle cannot be the trivial bundle  𝑆1 × ℝ . Indeed, the total space of this 

bundle is not even homeomorphic to 𝑆1 × ℝ but to see that needs a little bit more topological arguments. 

ii. The tangent bundle 𝜏(𝑋): = (𝑇𝑋, 𝑝, 𝑋) of any smooth submanifold  𝑋 ∈ ℝ𝑁 is a typical example of a vector bundle 

of rank 𝑛, where  𝑛 = 𝑑𝑖𝑚 𝑋. It satisfies the additional smoothness conditions, viz., 

a. Both the total space and the base space are smooth manifolds; 

b. The projection map 𝑝 is smooth and. 

c. The homeomorphisms 𝜑: 𝑝−1(𝑈) → 𝑈 × 𝑅𝑛 are actually 

diffeomorphisms. Over the base space B which is a smooth manifold, a vector bundle that satisfies these additional 

smoothness conditions will be called a smooth vector bundle. [1, p(139)] 

Theorem (3.14): Let 𝐺 be a Lie group. Then G is parallelizable. That is, its tangent bundle 𝑇𝐺 is trivial. 

Proof : 

Let 1∈ G denote the identity element, and 𝑇1𝐺 the tangent space of G at 1. If G is an n- dimensional manifold, 𝑇1𝐺 is an 

n- dimensional vector space. We define a bundle isomorphism of the tangent bundle 𝑇𝐺 with the trivial bundle  𝐺 ×
𝑇1(𝐺), which, on the total space level is given by a map 
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∅: 𝐺 × 𝑇1𝐺 → 𝑇𝐺 

Defined as follows. Let ∈ 𝐺 . Then multiplication by 𝑔 on the right is a diffeomorphism 

× 𝑔: 𝐺 → 𝐺 

𝑥 → 𝑥𝑔 

Since × 𝑔 is a diffeomorphism, its derivative is a linear isomorphism at every point: 

𝐷𝑔(𝑥) ∶ 𝑇𝑥𝐺
         ≃        
→      𝑇𝑥𝑔𝐺. 

We can now define 

∅: 𝐺 × 𝑇1𝐺 → 𝑇𝐺 

By 

∅(g, v)  = Dg(1)(v) ∈ 𝑇𝑔G.      (9) 

Clearly ∅ is a bundle isomorphism. 

Principal bundles are basically parameterized families of topological groups, and often Lie groups. In order to define the 

notion carefully we first review some basic properties of group actions. Recall that a right action of topological group G 

on a space X is a map 

µ ∶  𝑋 ×  𝐺 →  𝑋 

(𝑥, 𝑔)  →  𝑥𝑔 

Satisfying the basic properties 

i. 𝑥 ·  1 =  𝑥  For all  𝑥 ∈  𝑋 

ii. (2) 𝑥(𝑔1𝑔2)  =  (𝑥𝑔1)𝑔2  For all  𝑥 ∈  𝑋 𝑎𝑛𝑑 𝑔1 , 𝑔2  ∈ G . [13, p(8)] 

 

Definition (3.15): A vector field 𝑋 on a manifold 𝑀 is a function that assigns a tangent vector 𝑋𝑝  ∈ 𝑇𝑝𝑀 to each point 

𝑝 ∈  𝑀. In terms of the tangent bundle, a vector field on 𝑀 is simply a section of the tangent bundle 𝜋: 𝑇𝑀 →  𝑀 and 

the vector field is smooth if it is smooth as a map from M to TM. [11, p(136)] 

 

Definition (3.16):  A map 𝜉 ∶ 𝑀 →  𝑇𝑀 is called a vector field on  𝑀, if for all 𝑝 ∈  𝑀 we have 

𝜋(𝜉(𝑝)) =  𝑝.       (10)                      [4, p(33)] 

 

4. Method and discussion: 

Example (4.1):  Let  𝑆 =  ∅(𝑈), where 𝑈 =  {(𝑟, 𝜃) | 0 < 𝑟 < 2,− 𝜋 < 𝜃 < 𝜋} and ∅ ∶  𝑈 →  𝑅3 is given by 

∅(𝑟, 𝜃)  =  (𝑟 𝑐𝑜𝑠 𝜃, 𝑟 𝑠𝑖𝑛 𝜃, 𝑟2). 
 

We investigate the tangent space to 𝑆 at the point 𝑝1 = ∅1(√2,
𝜋

4
) = (1, 1, 2). 

We first consider two curves  𝑐˜𝑖 ∶  𝐼𝑖 → 𝑈, 𝑖 =  1, 2, where 𝐼1  =  (
−1

2
,
1

2
), 

𝐼2  =  (
−𝜋

2
,
𝜋

2
),  Given by 

𝑐˜1(𝑡)  = (𝑡 +  √2,
𝜋

4
) , 

And 

𝑐˜2(𝑡)  = (√2, 𝑡 +
𝜋

4
) . 

Geometrically, the image curves 𝑐˜1(𝐼1)  and 𝑐˜2(𝐼2) are parallel to the coordinate axes in 𝑈 and intersect at (√2,
𝜋

4
)  =

 𝑐˜1(0)   =  𝑐˜2(0). 
Now define 𝑐1 ∶  𝐼1 → 𝑆 and 𝑐2 ∶ 𝐼2  →  𝑆 by 𝑐1 = ∅ ο 𝑐˜1 and  𝑐2  = ∅ 𝜊 𝑐˜2. 

Explicitly, 

𝑐1(𝑡) = ((𝑡 + √2)𝑐𝑜𝑠 (
𝜋

4
) , (𝑡 + √2)𝑠𝑖𝑛 (

𝜋

4
) , ((𝑡 +  √2))

2

) 

 

= ( 
𝑡

√2
 +  1,

𝑡

√2
 +  1, (𝑡 + √2)

2
) , 

 

𝑐2(𝑡)  = (√2𝑐𝑜𝑠 (𝑡 +
𝜋

4
) , √2𝑠𝑖𝑛 (𝑡 +

𝜋

4
) , 2) 

 

= (cos 𝑡 − sin 𝑡 , cos 𝑡 + sin 𝑡 , 2) 
 

The image curves 𝑐1( 𝐼1) and 𝑐2(𝐼2) are, respectively, the curve of intersection of the plane 𝑥 =  𝑦 with the paraboloid 

𝑧 =  𝑥2  +  𝑦2 and the curve of intersection of the plane  𝑧 =  2  with the paraboloid  =  𝑥2  +  𝑦2 . 

Note that both 𝑐1(0)  =  𝑝  and  𝑐2(0)  =  𝑝, so that the tangent vectors 𝑣𝑝1  = 𝑐1̀(0)  and 𝑤𝑝1  = 𝑐2̀(0) are by definition 

elements of  𝑇𝑝(𝑆). Explicitly, 
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𝑣𝑝1  =  〈
1

√2
,
1

√2
, 2√2〉𝑝 

 

=
1

√2
〈1,1,4〉𝑝 

And 

𝑤𝑝1  =  〈−1, 1, 0〉 𝑝 

 

In fact, we show that every linear combination of 𝑣𝑝1 and  𝑤𝑝1  is a tangent vector to 𝑆 at   𝑝1. 

We note that the vectors 𝑣𝑝1  =
1

√2
〈1,1,4〉𝑝   and 𝑤𝑝1  =  〈−1, 1, 0〉 𝑝 studied above are two linearly independent vectors 

in the 2dimensional subspace  𝑊1, and so 

 

𝑇𝑝1(𝑆)  =  𝑊1  =  𝑆𝑝𝑎𝑛 {𝑣𝑝1 , 𝑤𝑝1}                 * 

 

Second, we also check the tangent space to 𝑆 at the point 𝑝2 = ∅2(√3,
𝜋

3
) = (

√3

2
,
3

2
, 3). 

We second consider two curves  𝑐˜𝑖 ∶  𝐼𝑖 → 𝑈, 𝑖 =  3,4 , where 𝐼3  =  (
−1

2
,
1

2
), 𝐼4  =  (

−𝜋

2
,
𝜋

2
),  Given by 

𝑐˜3(𝑡)  = (𝑡 +  √3,
𝜋

3
) , 

And 

𝑐˜4(𝑡)  = (√3, 𝑡 +
𝜋

3
) . 

 

The image curves 𝑐˜3(𝐼3)  and 𝑐˜4(𝐼4) are parallel to the coordinate axes in 𝑈 and intersect at (√3,
𝜋

3
)  =  𝑐˜3(0)   =

 𝑐˜4(0). 
Now define 𝑐3 ∶  𝐼3 → 𝑆 and 𝑐4 ∶ 𝐼4  →  𝑆 by 𝑐3 = ∅ ο 𝑐˜3 and  𝑐4  =  ∅ 𝜊 𝑐˜4. 

𝑐3(𝑡) = ((𝑡 + √3)𝑐𝑜𝑠 (
𝜋

3
) , (𝑡 + √3)𝑠𝑖𝑛 (

𝜋

3
) , ((𝑡 +  √3))

2

) 

 

= (
𝑡 + √3

2
,

𝑡 +  √3

2
√3, (𝑡 + √3)

2
) 

 

𝑐4 (𝑡)  = (√3𝑐𝑜𝑠 (𝑡 +
𝜋

3
) , √3𝑠𝑖𝑛 (𝑡 +

𝜋

3
) , (√3)

2
 ) 

 

𝑐4 (𝑡)  = (√3 (cos(𝑡) cos (
𝜋

3
) − sin(𝑡) sin (

𝜋

3
)), √3(sin(𝑡)𝑐𝑜𝑠 (

𝜋

3
) + cos(𝑡) sin (

𝜋

3
)),3) 

 

= (
√3

2
 (cos(𝑡) − sin(𝑡)),

√3

2
(sin(𝑡) + cos(𝑡)), 3) 

 

Note that both 𝑐3(0)  =  𝑝2 and 𝑐4(0)  =  𝑝2, so that the tangent vectors 𝐻𝑝2  = �́�3(0)  and 𝑄𝑝2  = �́�4(0) are by 

definition elements of 𝑇𝑝(𝑆). Then 

 

𝐻𝑝2 = 〈
1

2
,
√3

2
, 2√3〉𝑝 

 

𝑄𝑝2 = 〈
−√3

2
,
√3

2
, 0〉𝑝 

 

Studied above are two linearly independent vectors in the 2dimensional subspace  𝑊2, and so 

𝑇𝑝2(𝑆)  =  𝑊2  =  𝑆𝑝𝑎𝑛 {𝐻𝑝2 , 𝑄𝑝2}   ** 

 

Investigate the tangent bundle space on the tangent spaces  𝑇𝑝(𝑆) for all point in S, where the tangent bundle TS is the 

disjoint union of all the tangent spaces for all points in S. 

𝑇𝑆 =⋃𝑇𝑝𝑆 

From * and ** then 

𝑇𝑆 = {𝑇𝑝1(𝑆), 𝑇𝑝2(𝑆)} 
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Fig No (6): The Tangent Space 𝑇𝑝1(𝑆)  =  𝑊 =  𝑆𝑝𝑎𝑛 {𝑣𝑝1 , 𝑤𝑝1}      [2, p(84)] 

 

(4.2)Solution by using Matlab: 

clear all 

clc 

syms S pi U r th R I1 I2 i p C1 C2 C3 C4 t Vp1 Wp1 Hp2 Qp2 x1 y1 z1 x2 y2 z2 

pi=180; 

r =linspace(5,20,10); 

th =linspace(-pi,pi,10); 

t=0; 

% ?(?,?) = (?????,???? ?,?2). 

I1=linspace(-0.5,0.5,10); 

I2=linspace(-pi/2,pi/2,10); 

C1= [t+sqrt(2) pi/4]; 

C2= [sqrt(2) t+(pi/4)]; 

C1= [(t/sqrt(2))+1 (t/sqrt(2))+1 (t+sqrt(2))^2] 

C2= [(cos(t)-sin(t)) (cos(t)+sin(t)) 2] 

t=0; 

x1=((1/sqrt(2))*t)+1; 

x1=diff(x1); 

y1=((1/sqrt(2))*t)+1; 

y1=diff(y1); 

z1=(t+sqrt(2))^2; 

z1=diff(z1); 

x2= cos(t)-sin(t); 

x2=diff(x2); 

y2= cos(t)+sin(t); 

y2=diff(y2); 

z2=2; 

z2=diff(z2); 

% x1(t)=x1 

% y1(t)=y1 

% z1(t)=z1 

% x2(t)=x2 

% y2(t)=y2 

% z2(t)=0 

% Vp1=[x1 y1 z1] 

% Wp1=[x2 y2 z2] 

Vp1=[1/sqrt(2) 1/sqrt(2) 2*sqrt(2)] 

Wp1=[-1 1 0] 

subplot(2,1,1) 

plot(Vp1,Wp1) 

xlabel('Vp1'); 

ylabel('Wp1'); 

title('Combination of Vp1 and Wp1 is a Tangent Vector to S at  p1') 
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% We also check the tangent space to ? at the point ?2 

I1=linspace(-0.5,0.5,10); 

I2=linspace(-pi/2,pi/2,10); 

C3= [t+sqrt(3) pi/3]; 

C4= [sqrt(3) t+(pi/3)]; 

C3= [(t+sqrt(3))*(cos(pi/3)) (t+sqrt(3))*(sin(pi/3)) (t+sqrt(3))^2] 

C4= [(sqrt(3))*cos((t+(pi/3))) (sqrt(3))*sin((t+(pi/3))) sqrt(3)^2] 

x1=(t+sqrt(3))*(cos(pi/3)); 

x1=diff(x1); 

y1=(t+sqrt(3))*(sin(pi/3)); 

y1=diff(y1); 

z1=(t+sqrt(3))^2; 

z1=diff(z1); 

x2= (sqrt(3))*cos((t+(pi/3))); 

x2=diff(x2); 

y2= (sqrt(3))*sin((t+(pi/3))); 

y2=diff(y2); 

z2=sqrt(3)^2; 

z2=diff(z2); 

% Hp2=[x1 y1 z1] 

% Qp2=[x2 y2 z2] 

Hp2=[0.5 sqrt(3)/2 2*sqrt(3)] 

Qp2=[-sqrt(3)/2 sqrt(3)/2 0] 

subplot(2,1,2) 

plot(Hp2,Qp2,'r') 

xlabel('Hp2'); 

ylabel('Qp2'); 

figure 

hold on 

plot(Vp1,Wp1); 

plot(Hp2,Qp2,'r'); 

xlabel('Vp1 & Hp2'); 

ylabel('Wp1 & Qp2'); 

title('Disjoint Union of all the Tangent Spaces for all Points in S') 

hold off 

 

Result: 

C1 = 1.0000    1.0000    2.0000 

C2 = 1     1     2 

Vp1 = 0.7071    0.7071    2.8284 

Wp1 = -1     1     0 

C3 = -1.6496   -0.5279    3.0000 

C4 = -1.6496   -0.5279    3.0000 

Hp2 = 0.5000    0.8660    3.4641 

Qp2 = -0.8660    0.8660         0 

 

Represent the Solution Graphically 
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Fig No (7): Combination of 𝑣𝑝1 and 𝑤𝑝1 is a Tangent Vector to S at  𝑝1, 𝐻𝑝2 and  𝑄𝑝2  is a Tangent Vector to S at  𝑝2 

 
Fig No (8): Disjoint Union of all the Tangent Spaces for all Points in S 

 

(4.3)Discuss the Results: 

We discussed evaluating the performance of the computerized solution for tangent bundles, where we used a modern 

mathematical method, which consists of building a powerful algorithm that implements the solution, extracts the results, 

and represents them graphically, and it gave excellent results. In this study, we focused on the computerized solution to 

obtain accurate results, while other studies focused on the traditional method of dealing with tangent bundles. Through 

this study, we achieved great success in creating a tangent bundles from two spaces based on 4 curves (𝐶1, 𝐶2, 𝐶3, 𝐶4), 
On the two points (𝑝1, 𝑝2) in a two-dimensional spaces, while we were not able to apply it in a three-dimensional space, 

as we were satisfied with only the graphical representation of the tangent bundles , and the model achieved an accuracy 

of no less than 95% in solving the tangent bundles on the MATLAB program, which makes the MATLAB program It is 

suitable to be a suitable working environment in dealing with tangent bundles due to their importance in modern 

engineering sciences, artificial intelligence, and simulation programs. 

 

Results: 

After implementing all the steps in the previous example (4.1) on the MATLAB program by building a smooth 

algorithm that allows processing the largest number of points on space, a model was obtained automatically during the 

implementation and testing process that gave accurate and fast results. This model shows the graphical representation of 

the tangent bundle formed over space after performing the differentiation process on the curves resulting from 
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substituting point’s 𝑝1 and 𝑝2 . The optimal solution is the tangent bundle, and many points can be added to this 

algorithm to form an expanded bundle over space. 

 

Conclusion 

We presented an accurate model of tangent bundles using the MATLAB program, by applying all the steps mentioned in 

Example (4.1) by building an algorithm that allows the solution to be implemented and the results presented and 

represented graphically. This makes the MATLAB program a suitable working environment for dealing with tangent 

bundles in Different fields. 
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