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Abstract 
Manifold of constant negative curvature a great role in the field of physics, mathematics and engineering because it paves 
to the knowledge Gaussian curvature, n-sphere(s) is a topological n-manifold and objects of constant negative curvature 
are less familiar but they do appear in nature in the shape of corals and leave. No surprisingly, its plays an important 
role in geometric topology. The study aims to explain a generalization manifold of constant negative curvature. WE 
followed the analytical induction mathematical method. We found the following some results. Manifold of constant 
negative curvature indicates to know the behavior of some of the functions and also it reveals the Cartan-Hadamard 
theorem which is considered one of the importance aims of simply-connected manifold of nonpositive sectional curvature. 
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1.  INTRODUCTION: 
We know that any two point in a connected, simply connected complete, manifold M of constant negative curvature can 
be connected by a unique geodesic. Thus, the entire manifold M is geodetically convex and its infectivity radius is infinity. 
This continues to hold in much greater generality for manifolds with negative curvature, [1], pp1. 
We studied the geometric notion of a differential system describing manifold of a constant negative curvature. Constant 
curvature metrics surround us; we live in Euclidean space of zero curvature little soap bubbles have positive constant 
curvature. Objects of constant negative curvature are familiar, but they do appear in Nature in the shape of corals and 
leaves. No surprisingly, constant curvature play an important role in geometric topology, which studies manifolds. For 
example, of a constant negative curvature it can be show that a surface of revolation of constant Gaussian curvature. Then 
we proved that  the most important local-global  theorem of manifold constant negative curvature  is the Cartan-Hadamard  
theorem ,topologically characterizes complete, simply-connected manifold with negative curvature : they are  
diffeomorphic to ℝ. 
 
2. Manifolds: 
The core idea of both differential geometry and modern geometrical dynamics lies under the concept of manifold. 
Manifold is an abstract mathematical space, which locally resembles the space described by Euclidean geometry, but 
which globally may have a more complicated structure. A manifold can be constructed by 'gluing' separate Euclidean 
space together, for example, a world map can be made by gluing many maps of local regions together and accounting for 
the resulting distortion. Therefore, the surface of earth is manifold, locally it seems to be flat, but viewed as a whole from 
the outer space (globally) it is actually round. Another example of a manifold of a constant negative curvature is a circle, 
small piece of a circle appears to be like a slightly bent part of a straight line segment but overall the circle and the segment 
are different one-dimensional manifold, [6], pp2. 
A manifold is an abstract mathematical space in which every point has a neighbor- hood which resembles Euclidean 
space, but in which the global structure may be more complicated. In discussing manifold, the idea of dimension is 
important. For example, lines are one-dimensional and planes tow-dimensional. In one-dimensional manifold (or one-
manifold), every point has a neighborhood that looks like a segment of a line. Examples of one-manifolds include a line, 
a circle, and two separate circles. in a tow-manifold, every point has a neighborhood that look like a disk. Examples 
include a plane, the surface of a sphere and the surface of a torus. Manifold are important objects in mathematics and 
physics because they allow more complicated structure s to be expressed and understood in terms of the relatively well-
understood properties of simpler spaces. [6], pp2    
 
Definition (2.1): [6], pp2. 
A topological space X is said to be  Hausdorff if for any two distinct points �� ∈ � there exist disjoint open sets U and V 
with � ∈ � and � ∈ �. 
The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves with the 
ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they 
may behave like groups, for instance. An atlas describes how a manifold is glued together from simpler pieces where each 
piece is given by a chart (coordinate chart or local coordinate system). The description of most manifold requires more 
than one chart. An atlas is not unique as all manifolds can be covered multiple ways using different combinations of 
charts. In a one-dimensional manifold (or one-manifold), every point has a neighborhood that looks like a segment of 
line. In a two-dimensional, every point has a neighborhood that looks like a disk. Examples include a plane, the surface 
of a sphere and the surface of a torus, [10], pp1.  
 
Definition (2.2):[ 6 ],pp2. 
An atlas A on a manifold M is said to be maximal if for any compatible atlas A' on M any coordinate chart (�, �) ∈ �′ is 
also a member of A. 
This definition of atlas is exactly analogous to the non– mathematical meaning of atlas. Each individual map in an atlas 
of the world gives a neighborhood of each point on the globe that is homeomorphic to the plane. While each individual 
map does not exactly line up with other maps that it overlaps with, the overlap of two maps can still  
be compared.  Manifolds are Euclidean Spaces. Different choices for simple spaces and compatibility conditions give 
different objects. The dimension of the manifold at a certain point is the dimension of the Euclidean space charts at that 
point map to (number in the definition), . All points in a connected   manifold have the same dimension. In topology and 
related branches of mathematics, a connected space is a topological space which cannot be written as disjoint union of 
two or more nonempty spaces. connectedness is one of the principal topological properties that is used to distinguish 
topological spaces. A manifold with empty boundary is said to be closed manifold if it is compact, and open manifold if 
it is not compact. All one-dimensional manifolds are curves and all two-dimensional manifolds are surfaces, [6], pp2. 
 
Definition (2.3): [ 6 ] , pp 2.  
A manifold is a Hausdorff space M with a countable basis such that for each point    p∈ � there is a neighborhood U of 
p that is homeomorphic to ℝ�for some integer n. If the integer n is the same for every point in M, then M is called a n-
dimensional manifold.  
We are almost ready to give the official definition of manifolds. We need just one more preliminary definition, which 
captures in a precise way the intuitive idea that a manifold should look “locally” like Euclidean space. A topological space 
M is said to be locally Euclidean of dimensionn if every point ofM has a neighborhood in Mthat is homeomorphic to an 
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open subset of ℝ�. For some purposes, it is useful to be more specific about the kind of open subset we use to characterize 
locally Euclidean spaces. The next lemma shows that we could have replaced “open subset” by open ball or by ℝ� itself.  
 
Topological Manifolds: 
Lemma (2.4): [3], pp38. 
A topological space M is locally Euclidean of dimension n if and only if either of the following properties holds: 
(a) Every point ofMhas a neighborhood homeomorphic to an open ball in ��. 
(b) Every point ofMhas a neighborhood homeomorphic to ℝ� . 
 
Definition (2.5): [4], pp (2-3). Suppose M is a topological space. We say that M is a topological manifold of dimension 
n or a topological n-manifold if it has following  

i.M is a Haausdorff space :for every pair of distinct points �, � ∈ �, there are disjoint open subset �, � ⊂ � ,such that  
� ∈ �and q ∈ �. 

ii.M is second-countable: there exists a countable basis for the topology of M. 
iii.M is local Euclidean of dimension n each point of  M has neighborhood that is homeomorphic to an open subset of 

ℝ� .The third properties means more specifically ,  that for each ∈ � can find  
 

a. open subset � ⊂ �containing p, 
b. an  open subset�� ⊂ �� and 
c. a homeomorphism �: � → ��. 
 
Definition (2.6): [11], pp8. The simplest kind of manifold to define is the topology  manifold , which looks locally like 
some "ordinary " Euclidean space ℝ�. Formally, a topological manifold is a topological space locally homeomorphic to 
a Euclidean space. This  means that every point has a neighborhood for which there exists a home- omorphism(a bijective 
continuous function whose inverse is also continuous) mapping that neighborhood to ℝ�. These homeomorphisms are the 
chart of the manifold. Usually additional technical assumptions on the topological space are made to exclude pathological 
cases. It is customary to require that the space be Hausdorff and second countable. The dimension of the manifold at a 
certain point is the dimension of the Euclidean space charts that point map to (number n in the definition). All points in a 
connected manifold have the same dimension. Some authors require that all charts of a topological manifold   map to the 
same Euclidean space. In That case every topological manifold has a topological invariant, its dimension. Other authors 
allow disjoint unions of topological manifolds with differing dimensions to be called manifolds.  
 
Example (2.7): [4], pp (5-6). For each integer � ≤ 0,the unit n-sphere ��is Hausdorff and second- countable because it 
is a topological subset of ����. To show that it is locally Euclidean, for each index � = 1, … … , � + 1 let ��

�denote the 
subset of ������ where the � the coordinate is positive: 

��
� = {(��, … . , ��) ∈ ����: �� > 0}.                                                                                 (1) 

(See Figure No.1) similarly, ��
� is the set where �� < 0. Let �: �� → � be the conti- nuous function  

�(�) = �1 − |�|�. 
Then for each � = 1, … … . , � + 1, it is easy to check ��

� ∩ �� is the graph of the function 
�� = �(��, … . . , ��� , … . . , ����), 

Where the hat indicates that ��is omitted. Similarly ��
� ∩ ��is the graph of the 

�� = −�(��, … . . , ��� , … . . , ����). 

Thu, each subset  ��
± ∩ �� is locally Euclidean of dimension �, and the maps ��

±: ��
� ∩ �� → ��given by 

��
±(��, … . . , ����) = ��(��, … . . , ��� , … . . , ����), 

are graph  coordinates for ��. Since each point of  ��is in the domain of at least one of these 2� + 2 chart, �� is a 
topological � −manifold. 
 

 
Figure: 1.Chart ��. 
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Example (2.8): [4], pp7. Suppose ��, … , ��are topological manifolds of dimensional ��, … , �� , respectively. The 
product space �� × … × ��is shown to be a topological manifold of dimensional �� + ⋯ + �� as follows. It is Hausdorff 
and second –countable, so only the locally Euclidean property needs to be ckecked. Given any point (��, … , ��) ∈
�� × … × ��,we can chose a coordinate chart (��, ��)for each ��with �� ∈ ��. The product map 

�� × … × ��: �� × … × �� → ℝ���⋯��� 
 
is a homeomorphism onto its image, which is a product open subset of ℝ���⋯���. Thus, �� × … × ��is a topological 
manifold of dimensional �� + ⋯ + ��, with chart of form (�� × … × ��,�� × … × ��). 
 
i. Riemannian Manifolds: 
Definition (2.9): [11], pp8. To measure distances and angles on manifolds, manifold must be Riemannian. A Riemannian 
manifold  is an analytic manifold in which each tangent space is equipped with an inner product 〈−, −〉 in  a manner 
which varies smoothly from point to point . Given  two tangent vectors u and v  the inner product 〈�, �〉 gives a real 
number .The dot ( or scalar) products  a typical example  of an inner product . This allows one to define various notion 
such as length, angles, areas (or volumes), curvature, gradients of functions and divergence of vector fields. Most familiar 
curves and surfaces, including n-sphere and Euclidean space can be given the structure of a Riemannian manifold.  
 
ii. Smooth Manifold:  
Definition (2.10): [4], pp13. A smooth manifold is a pair (�, �),where � is a topological manifold and � is a smooth 
structure on �. 
 
Example (2.11): [3], pp17. A topological manifold M of dimension 0 is just a countable discrete space. For each point 
� ∈ �; the only neighborhood of p that is homeomorphic to an open subset of ℝ� is {�}itself, and there is exactly one 
coordinate map �: {�} → ℝ�. Thus, the set of all charts on M trivially satisfies the smooth compatibility condition, and 
each 0-dimensional manifold has a unique smooth structure. 
 
Example (2.12): [4], pp22. Let V an n-dimensional real vector space .For any integer 0 ≤ � ≤ �,  we let��(�). denote 
the set of all k-dimensional linear subspace of V. We will show that ��(�)   can be naturally given  the structure of a 
smooth manifold of dimension �(� − �). With this structure, it is called Grassmann manifold or simply a Grassmannian. 
In the special case V= ��, the Grassmannian ��(��)is often denoted by some simpler notation such as ��,�, or =�(�, �). 

Note that ��(����) is exactly the n-dimensional projective space  ��. 
 
Example (2.13): [4], pp17. For each nonnegative integer n, the Euclidean space ℝ�  is a smooth n-manifold with the 
smooth structure determined by the atlasconsiting  of the single chart (ℝ�, Idℝ�). We call this the standard smooth 
structure onℝ� and the resulting coordinate map standard coordinates. Unless we explicitly specify otherwise, we always 
use this smooth structure on ℝ� . With respect to this smooth structure, the smooth coordinate charts for ℝ� are exactly 
those charts (�, �)such that �is a diffeomorphism (in the sense of ordinary calculus) from U to another open subset �� ⊆
ℝ�. 
 
v. Differentiable Manifolds: [11] 
For most applications a special kind of topological manifold, a differentiable manifold. If the local chart on a manifold 
are compatible in a certain sense, one can define directions, tangent spaces and differentiable functions on that manifold. 
In particular, it is possible to use calculus on a differentiable manifold. Each point of an n-dimensional differentiable 
manifold has a tangent space through the point. 
Two important classes of differentiable manifolds are smooth and analytic manifolds. For smooth manifolds the transition 
maps are smooth, that is infinitely differentiable. Analytic manifolds are smooth manifolds with the additional condition 
that the transition maps are analytic (a technical definition which loosely means that Taylor's theorem holds). The sphere 
can be given analytic structure, as can most familiar curves and surfaces.      
 
 
3. Constant Negative Curvature: 
The definition of constant negative curvature it can be shown that a surface of revolution of constant Gaussian curvature, 
the standard definition can easily be discussed by using the following example 
 
Example (3.1): [2], pp (196-198). A surface with constant negative Gaussian curvature, however, we have to construct 
a new surface. To this end, we examine again the surface of revolution 

�(�, �) = (�(�) cos �, �(�) sin � , �(�))                                                                 (2) 

Obtained by rotating the unit- speed curve� → ��(�), 0, �(�)� in the �� − ����� around the � − ����. We have the 

Gaussian curvature is  

� =
�� − ��

�� − ��      
                                                                                                                     (3) 

in Equation(2)where ,we can assume that � > 0 and �� + �� = 1, everywhere (a dot denoting � ��)⁄ . We found that 

� = 1, � = 0, � = ��, � = ��,̈̇  � = 0, � = ��.̇  
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So, the Equation (3) becomes 

� =
���̇̈��̈�̇���̇

�� .                                                                                                      (4) 

 

We can simplify this formula by noting that �̇� + �̇� = 1 implies(by differentiating with respect to �) that  �̇�̈ + �̇�̈ =
0, 

∴ ��̇�̈ − �̈�̇��̇ = −�̇��̈ − �̈�̇� = −�̈��̇� + �̇�� = −�̈, 

∴ � = −
�̈�

�� = −
�̈

�
.                                                                           (5) 

 

Suppose first that � = 0, everywhere.Then the Equation(5) gives �̈ = 0, �� 

 �(�) = �� + �for some constant � ��� �.Since  �̇� + �̇� = 1 , we get �̇ = ±√1 − ��(so we most have |�| ≤ 1)and 

hence �(�) = ±√1 − ��� + �, where � is another constant. By applying a translation along the � − ���� we can assume 
that � = 0, and by applying a rotation by � about the � − ���� , if necessary , we can assume that the sign is +. This gives 
the ruled surface 

�(�, �) = (���� �, ���� �, 0) + � �acos �, asin �, �1 − ��� .                           (6) 

If � = 0 that is a circular cylinder; if |�|=1it is the �� − �����; and if  0< |�| < 1 it is a circular cone (to see this put 
�� = �� + �). 
Now suppose that � > 0, say � =  1 ��⁄ , where � > 0 is a constant. Then, Equation (5) becomes  

�̈+
�

�� = 0;                                                                                                               (7) 

 
which has the general solutions 

�(�) = � ��� �
�

�
+ ��,where � ��� � are constant. We can assume that � = 0 by performing a reparmetrization �� = � +

��, �� = �. �ℎ��, up to a change of sign and adding a constant,  

�(�) = � �1 −
��

��
sin

�

�
��.                                                                                  (8) 

 
The integral in the formula for �(�) can be evaluated in terms of  'elementary' functions only when � = 0 or ±�. The 

case � = 0 does not give a surface , if � = � , then �(�) = ���� 
�

�
, �(�) = ���� 

�

�
 ��� we have a sphere of  radius 

�(�ℎ� ���� � =  −� can be reduced to this by rotating the surface by �around the � − ����). Suppose finally that � <
0. We can restrict ourselves to the case � = −1, as the general case can be obtained from this by applying  a dilation of 
��.In view preceding  case , we think  of a surface with � = −1 as a 'sphere of imaginary radius ' 

√−1, or 'pseudosphere'. 
 
When � = −1 the general solution of Equation (5) is  

�(�) = ��� + ���� ,                                                    (9) 
 
where a and  b are arbitrary constant. The function �(�) can be expressed in terms of elementary  function only if one a 
or b is zero. If � = 0 we can assume that � = 1 by a reparametrization  � → � + constant and the case in which � = 0 can 
be reluced to case � = �, � → � −. Suppose then that � = 1 ��� � = 0,  then ,�(�) = �� and we can take  

�(�) = �1 − �����                                                                                 (10) 
 
Note that we must have � ≤ 0 for the integral in Equation (10) to make sense, since otherwise  1 − ���would be negative. 
The integral can be evaluated by putting cos � = ��.Then  

� �1 − ����� = − �
�����

cos �
�� = sin � − ln(sec � + tan �) 

= √1 − ��� − ln(��� + ����� − 1).                  (11) 
 
We have omitted the arbitrary constant, but we can take it to be zero by a suitable translation of the surface parallel to the 

z-axis. Putting � = �(�), � = �(�) and noting that cosh��(�) = ln(� + ��� − 1) , �� see that the profile curve in �� −

����� has equation 

� = �1 − �� − cosh�� �
1

�
�.                                                                                  (12) 

Rotation this curve around the � − ���� thus gives a surface which has Gaussian curvature −1 everywhere. Note that, 
since � ≤ 0, � = �� is restricted to the range 0 < � ≤ 1. 
 
4.   Manifold of Constant Curvature: 
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Definition (4.1): [9], pp45. By definition, on n-dimensional manifold of constant curvature � is a length space X that is 
locally isometric to ��

�. In other words, for every point � ∈ � there is an  � > 0 and an isometry ∅ from �(�, �) onto a 
ball �(∅(�), �) ⊂ ��

�. 
 
Theorem (4.2): [9], pp45. Let � be a connected, n-dimensional manifold of constant curvature �. When endowed with 
the induced length metric, the universal covering of Xis isometric to ��

�. 
Proof. By definition, a chart ∅ ∶ � → ��

� is an isometry from an open set � ⊆Xonto an open set ∅(�) ⊆ ��
�. If∅�: �� →

��
� is another  chart and if � ∩ �' is connected, then  there is a unique isometry g∈ Isom(��

�) such that ∅ and g ∘ ∅� are 
equal on � ∩ ��.Consider the set of all pairs (∅, �), where ∅: � → ��

� is a chart and � ∈ �. We  say that two such pairs 
(∅, �) and (∅�, ��) are equivalent if � = ��and if the restrictions ∅ and ∅� of  to a small neighborhood of x coincide. This 
is indeed an equivalence relation and the equivalence class of (∅. �) is called the germ of ∅  at x. Let Xbe the set of all 
equivalence classes, i.e. the set of all germs of charts. Let �̂: �� → � and ��: �� → ��

�be the maps that send the germ of ∅ 

at x to x and ∅ (x) respectively. Notice that there is a natural action of  G = Isom(��
�) on ��if �� is the germ of 

∅ at x and if g ∈ G, then g.�� is the germ of g o ∅ at x. The map ��: �� → ��
� is G-equivariant: g.(��(��)) = ��(g.��)  if ��, �� � ∈

�̂��(�), there are a unique g ∈ �    such that g.�� = ���. There is a natural topology on��, called the germ topology, with 
respect to which p is a covering and D is a local homeomorphism. The basic open sets defining this 
topology are �∅, where ∅: � → ��

� is a chart and �∅, ⊆ ��is the set of germs of ∅ at the various points of U. The restriction 

of  �̂�����. ������∅, is a homeomorphism onto U (resp. ∅(�). Moreover, if U is connected then �̂��(U) is the disjoint 

union of the open sets ��∘∅, where g e G .Thus �̂: �� → � is a covering map (and in 

particular X is Hausdorff Choose a base point �� ∈ � and a chart ∅ defined at ��. Let��� ∈ �� be the germ 
of ∅ at ��, and let �� be the connected component of �� containing��� . Let p : �� → � and �: �� → ��

� be the restrictions of 

�̂ and ��to �� . Let Γ ⊂G b e the subgroup of G that leaves �� invariant. Then p : �� → � is a Galois covering with Galois 
group Γ and the map D is a local homeomorphism which is Γ-equivariant. If we endow �� with the unique length metric 

�� such that p is a local isometry , then D becomes a local isometry. Now we assume that X is complete. Then (��, ��) is 
also complete, if  D : �� → ��

� is a covering. As ��
� is simply connected and �� connected, D must be a homeomorphism. 

Thus �� is simply connected (hence the universal covering of X), and D is an isometry. 
 
5. Manifold of Constant Nonpositive Curvature: 
Our major local- global theorem in arbitrary dimensions is the following character- ization of simply – connected manifold 
of constant no positive curvature. 
 
Theorem(4.1):[3], pp(196-197).If � is a complete connected manifold all of whose sectional curvature are nonpositive 
, then for any point � ∈ �,  ����: ��� → � is a covering map. In particular,  the universal covering space of � is 

diffeomorphic to ��. If � is simply connected , then � itself is diffeomorphic to ��. 
Proof: 
The assumption of nonpositive  curvature guarantees that � has no conjugate points along any geodesic , which can be 
shown by using either the conjugate point comparison theorem above (4.1). Therefore, ���� is a local diffeomorphism 

on all of ���. Let ��  be the (variable – coefficient) 2-tensor field ����
∗ � defined on ���. Because  ����

∗  is everywhere 

nonsingular, �� is a Riemannian metric and ����: (���, ��) → (�, �) is a local isometry. it then follows from Lemma 

(4.2) below that ����is a covering map. The remaining statements of the theorem follow immediately from uniqueness 

of the universal covering space. 
 
Lemma(4.2):[3], pp197.Suppose ��and � are connected Riemannian manifolds with��complete and �: �� → M is a local 
isometry. Then � is complete and � is a covering map. 
 
6.  Discussion: 
After we provided the introduction of manifold of constant negative curvature we explained and discussed that a 
Riemannian manifold have manifold of constant negative curvature and we know us constant negative curvature which 
has Gaussian curvature. Also we discussed and proved that the most important local-global theorem of simply-connected 
manifold of nonpositive sectional curvature is the Catan-Hadamard theorem.   
 
Results: 
Manifold of constant negative curvature indicates to know the behavior of some of the functions and manifold and also it 
revealed the cartan- Hadamard theorem which is considered one of the importance application of the manifold of constant 
negative curvature. 
 
Conclusion: 
Finally, we can say that any manifold of constant negative curvature is Riemannian manifold. 
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