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ABSTRACT.  
In this paper we study to solve the of additive (s,t)-functional inequality with n-variables and their Hyers-Ulam stability. 
First are investigated in Banach spaces with a fixed point method and last are investigated in Banachspaces with a 
direct method .These are the main results of this paper. 
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 1. INTRODUCTION 
Let X and Y be a normed spaces on the same field K, and  f : X → Y. We use the notation · for all the norm on both X 
and Y. In this paper, we investisgate additive (s,t)-functional inequality when X be a normed space and Y a Banach 
spaces. We solve and prove the Hyers-Ulam stability of forllowing additive  
(s; t)-functional inequality. 

 
In which (s;t) are fixed nonzero complex numbers with G(s;t)-functional inequality.Note that in the preliminaries we 
just replacing some of the most essential properties for the above problem and for the specific problem, please see the 
document. The HyersUlam stability was first investigated for functional equation of Ulam in [29] concerning the 
stability of group homomorphisms. 
The functional equation 
                                                  f(x + y) = f(x) + f(y) 
is called the Cauchy equation. In particular, every solution of the Cauchy equation is said  to be an additive mapping.  
The Hyers [14] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After that, 
Hyers’Theorem was generalized by Aoki [1] additive  
mappings and byRassias [27] for linear mappings considering an unbouned Cauchy diffrence. Ageneralization of the 
Rassias theorem was obtained by Găvruta [11] by replacing the unbounded Cauchy difference by a general control 
function in the spirit of Rassias’ approach. The stability of quadratic functional equation was proved by Skof [28] for 
mappings f : X → Y , where X is a normed space and Y is a Banach space. Park [25],[26] defined additive γ -functional 
inequalities and proved the HyersUlam stability of the 
additive γ -functional inequalities in Banach spaces and nonArchimedean Banach spaces. The stability problems of 
various functional equations have been extensively investigated by a number of authors on the world. We recall a 
fundamental result in fixed point theory. Recently, in [3],[4],[22],[23],[25],[26] the authors studied the Hyers-Ulam 
stability for the following functional nequalities 
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in Banach spaces 
In this paper, we solve and proved the Hyers-Ulam stability for (s, t)-functional inequalities (1.1), ie the (s;t)-functional 
inequalities with three variables. Under suitable assumptions on spaces X and Y, we will prove that the mappings 
satisfying the (s; t)-functional inequatilies (1.1). Thus, the results in this paper are generalization of those in 
[3],[4],[5],[15],[22] for (s; t)-functional inequatilies with three variables. 
The paper is organized as followns: In section preliminarier we remind some basic notations in [3],[8] such as complete 
generalized metric space and Solutions of the inequalities. 
 
Section 3: In this section, I use the method of the fixed to prove the Hyers-Ulam stability of the addive (s,t)- functional 
inequalities (1.1) when X be a normed space and Y Banach space. 
 
Section 4: In this section, I use the method of directly determining the solution for (1.1) when X be a normed space and 
Y Banach space. 
 
2. Preliminaries 
 
2.1. Complete Generalized Metric Space And Solutions of The Inequalities. 

 
 
2.2. Solutions of The Inequalities.  
The functional equation f(x + y) = f(x) + f(y) is called the cauchuy equation. In particular, every solution of the cauchuy 
equation is said to be an additive mapping. For convenience, I also require the following classes of mappings: 

                              

                     
 
3. Establish The solution of The Additive (s,t)-Function Inequalities Using A Fixed Foint Method 
Now, we first study the solutions of (1.1). Note that for these inequalities, when X be a normed space and Y is a Banach 
space. 
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4. Establish The Solution of The Additive (s,t)-Function Inequalities Using A Direect Method 
Now, we first study the solutions of (1.1). Note that for these inequalities, when X be a normed space and Y is a Banach 
space. 
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CONCLUSION 
In this paper, I introduce the general (s,t)-function inequality with n variables and then I use two methods of non-zero 
point and direct direction to prove and show their solutions. This is an unlimited number of variables when we 
provefunctional inequalities. 
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