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Abstract. 
Let  C(X)  denote  the  set  of  all  covering  spaces ���, ��, ��  of  (X, x)  where (X, x) are path connected,locally path 

connected and semilocally simply connected pointed topological spaces. 
In this paper we show that: 
(i)(C(X), ≥) is a lattice and (Cr(X), ≥) is a sublatice of (Cr(X), ≥) without assuming π(X, x) is abelian, where  C (X) is the 

set of all regular covering spaces of (X, x). 
(ii)(C(X), ≥) is a modular, bounded and complete lattice when π( X, x) is abelian. 
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lattice. 
  

IJRDO - Journal of Mathematics ISSN: 2455-9210

Volume-9 | Issue-1 | Jan, 2023 19



1. INTRODUCTION 
Throughout the paper we assume that all the spaces (X, x) are path connected, locally path connected and semilocally 
simply connected pointed topological spaces and maps are base point preserving continuous maps. A covering space of 

a space (X, x) is a triple ���, ��, ��  consisting of a pointed space (X, x) and a continuous surjective map p : (��, ��) → (X, 

x) such that each point x ∈ X has a path connected open neighborhood U such that each path component of p−1(U ) is 
mapped homeomorphically onto U by p. 

Let ���
�, ���, ��� and ���

�, ���, ��� be two covering spaces of (X, x).  A homomorphism of ���
�, ���, ��� into ���

�, ���, ��� is a  

base point preserving continuous map f :(��
�, ���) ⟶ ���

�, ���� such that p2f  = p1.  If in particular, f  is a homeomorphism,  

then the coverings ���
�, ���, ��� and ���

�, ���, ��� are said to be isomorphic. 

Let C(X) denote the set of all covering spaces ���, ��, �� of (X, x).  Then for  each  ���, ��, �� ∈ C(X),  the  map  p : (��, ��)  

→ (X, x)  induces  a  monomorphism  p∗ :  π(��, ��)  → π(X, x)  in  the  corresponding  fundamental  groups. The image 
group H  = p∗π((��, ��) depends on the choice of the base point  �� ∈ p−1(x). 
Let (S, ≤) be a partially ordered set (Poset) and a, b are any two elements of S.  The least upper bound(lub) of  {a, b} in 
(S, ≤),  if it exists,  is denoted by a ∨ b. Similarly the greatest lower bound (glb) of {a, b} in (S, ≤), if it exists, is denoted 
by a ∧ b. 
A poset (S, ≤) is called an upper semi lattice if a ∨ b exists in S for all a, b ∈ S. Similarly a poset (S, ≤) is called a lower 
semi lattice if a ∧ b exists in S for all a, b ∈ S. 
A poset (L, ≤) is called a lattice if a ∨ b and a ∧ b exits in L for all a, b ∈ L. Let (L, ≤) be a lattice and L′ be a nonempty 
subset of L such that a ∨ b and a ∧ b exits in L′ for all a, b ∈ L′,then (L′, ≤) is called a sublattice of (L, ≤). 
A lattice (L, ≤) is called a modular lattice if for  all  a, b, c  ∈ L,  a  ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c and is called a 
distributive lattice if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L. 
A lattice (L, ≤) is called a complete lattice if every subsets of L have both a lub and a glb. 
Let G be group and S be any subset of G.  Write < S > = ⋂ ��  , where T is the collection of subgroups K ⊆ G that 
contains S. Then < S > is the smallest subgroup of G containing S and is called the subgroup generated by S. If G is an 
abelian group then every subgroup of G is normal, hence for any two subgroups A and B of G, < A ∪ B >= A + B, their 
sum is a normal subgroup of G. 
 
Lemma 1.1 
Two covering spaces���

�, ���, ��� ���   ���
�, ���, ��� such that p1(���) = p2(���) = x  are  isomorphic  if  and  only  if  the  

subgroups  p1 ∗ π(��
�, ���)  and p2 ∗ π(��

�, ���) belong to the same conjugacy class in  π(X, x). 
 
Lemma 1.2 

Given  a  subgroup  H  of  π(X, x),there  exists  a  covering  space  ���, ��, �� of (X, x) such that  p ∗ π(��, ��) = H. 

 
Let ���

�, ���, ��� ���   ���
�, ���, ���  ∈  C(X).   Define  a  binary  relation  ρ  on C(X)  by  ���

�, ���, ��� ρ ���
�, ���, ���⇔ p1 ∗ 

π(��
�, ���) = p2 ∗ π(��

�, ���).  Then ρ is an equivalence relation. 
Let C(X)/ρ denote the set of all ρ equivalence classes (��, ��, �)ρ of the coverings  of  (X, x).  Define  ′ ≥′  on  C(X)/ρ  by  

���
�, ���, ��� ρ ≥ ���

�, ���, ���ρ ⇔ p1 ∗ π(��
�, ���) ⊆ p2 ∗ π(��

�, ���). 

 
Proposition 1.3 
′ ≥′ is a partial order relation on C(X)/ρ. 
Proof : As the relation ′ ≥′ on C(X)/ρ is determined in terms of set inclusion, it follows that ′ ≥′  is a partial order relation 
on C(X)/ρ. 
 
Theorem 1.4 
The partially ordered set (C(X)/ρ, ≥) is a semilattice. 
Proof :  Let ���

�, ���, ��� ρ, (��
�, ���, p2)ρ ∈ C(X)/ρ.  Then  p1 ∗ π(��

�, ���) and p2∗π(��
�, ���)  are  subgroups  of  π(X, x). Let  

A  =  p1∗ π(��
�, ���) ∩ p2∗π(��

�, ���). Then A is a subgroup of π(X, x).  Hence by Lamma 1.2, we find a covering space 
(��, ��, p) ∈ C(X) such that p ∗ π(��, ��) = A. 

Then  p∗π(��, ��)  ⊆ p1∗ π(��
�, ���)  ⇔ (��, ��, p)ρ  ≥ (��

�, ���, p1)ρ.   Again, p∗π(��, ��)  ⊆ p2∗π(��
�, ���)  ⇔ (��, ��, p)ρ  ≥  

(��
�, ���, p2)ρ.   Consequently, (��, ��, p)ρ  is  an  upper  bound  of  (��

�, ���, p1)ρ  and  (��
�, ���, p2)ρ.   We claim that (��, ��, 

p)ρ  is the lub of  (��
�, ���, p1)ρ  and  (��

�, ���, p2)ρ.  Let (��, ��, p′)ρ ≥ ���
�, ���, ��� ρ and (��, ��, p′)ρ ≥ (��

�, ���, p2)ρ in C(X)/ρ. 

Then p′∗π(���, ���) ⊆ p1∗π(��
�, ���) and p′∗π(���, ���) ⊆ p2∗π(��

�, ���). Consequently, p′∗π(���, ���′)⊆ p1∗π(��
�, ���)∩p2∗π(��

�, ���)  
=  A  =  p ∗ π(��, ��).   Hence  (���, ���, p′)ρ  ≥ (��, ��, p)ρ. 
 
We  now  define  ′∨′  on  C(X)/ρ  by  the  rule  (��

�, ���, p1)ρ ∨ (��
�, ���, p2)ρ  = (��, ��, p)ρ (the  latter  is  determined  as  

above). Consequently  the  partially ordered set (C(X)/ρ, ≥) is a semilattice. 
 
Theorem 1.5 
Let (X, x) be a space such that its fundamental group π(X, x) is abelian. Then (C(X), ≥) is a lattice. 
Proof : We now consider covering spaces of (X, x). As π(X, x) is abelian, 
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two subgroups of π(X, x) are conjugate iff they are equal.  Consequently, two covering spaces of (X, x) are isomorphic 

iff they correspond to the same subgroup  of  π(X, x),  by  lemma  1.1.   Let  ���
�, ���, ���, (��

�, ���, p2) ∈ C(X). 

Define  ���
�, ���, ���  ≥  (��

�, ���, p2)⇔ p1 ∗ π(��
�, ���)  ⊆ p2 ∗ π(��

�, ���).  Then ′ ≥′ is a partial order relation and (C(X), ∨) is 

an upper semilattice by theorem 1.4. 
Again suppose A = p1∗π(��

�, ���) and B = p2∗π(��
�, ���) for some (��

�, ���, p1) and  (��
�, ���, p2) ∈ C(X). As  π(X, x)  is  

abelian,  the  subgroups  A  and  B  of π(X, x) are also abelian. Hence their sum A+B is also a subgroup of π(X, x) 
such that A ⊆ A + B and B ⊆ A + B. Then by Lemma 1.2, there exists a covering  space (��, ��, p) of (X, x) such that  p ∗ 
π((��, ��) = A + B. Now A ⊆ A + B  ⇒ p1 ∗ π(��

�, ���) ⊆ p ∗ π(X, x) ⇒ (��
�, ���, p1) ≥ (��, ��, p).Similarly B  ⊆ A + B  ⇒ 

(��
�, ���, p2)  ≥ (��, ��, p).Thus  (��, ��, p)  is  a  lower  bound  of (��

�, ���, p1) and (��
�, ���, p2).We claim that it is their glb. To 

prove this, let (���, ���, p′) ∈ C(X) be such that (��
�, ���, p1) ≥ (���, ���, p′) and (��

�, ���, p2) ≥ (���, ���, p′) .Then  A ⊆ p′ ∗ 
π(���, ���′)  =  D. Similarly  B  ⊆ D.  Consequently A + B ⊆ D  and this implies (��, ��, p)  ≥ (���, ���, p′).  Define ′∧′  on C(X) 

by (��
�, ���, p1) ∧ (��

�, ���, p2) = (��, ��, p) .Thus (C(X), ∧) is a lower semilattice. 
Hence (C(X), ≥) is a lattice. 
 
Next we show that (C(X), ≥) is a lattice without assuming that π(X, x) is abelian. 
Theorem 1.6 
We show that (C(X), ≥) is a lattice, without assuming that π(X, x) is abelian. 
Proof :  Let ���

�, ���, ��� , ���
�, ���, ���∈ C(X).  Define ���

�, ���, ��� ≥ ���
�, ���, ��� ⇔ p1∗π(��

�, ���) ⊆ p2∗π(��
�, ���).  Then 

′‘≥′  is a partial order relation and (C(X), ∨) is an upper semilattice by theorem 1.4. 

Again suppose A = p1∗π(��
�, ���) and B = p2∗π(��

�, ���) for some (��
�, ���, p1) and (��

�, ���, p2) ∈ C(X).  Let S = A ∪ B. 

Then < S > = ⋂ �� , where T is the collection  of  subgroups  K ⊆ π(X, x)  that  contains  both A and B. It is clear that  

A⊆ < S > and  B ⊆ < S >. Then by Lemma 1.2, there exists  a  covering  space  (���, ���, p′) of  (X, x)  such  that  

p′∗ π(���, ���) = <  S  > = < A ∪ B  >. Now A⊆ <  S  > ⇒ p1∗  π(��
�, ���) ⊆ p′∗ π(���, ���) ⇒ (��

�, ���, p1) ≥ (���, ���, �′). 

Similarly  B⊆ < S  >⇒ ���
�, ���, ��� ≥ (���, ���, p′). Thus (���, ���, p′) is a lower bound of (��

�, ���, p1) and ���
�, ���, ���.  We 

claim that  it  is  their  glb.   To  prove  this,  let  (���′, ����, p′′ )  ∈ C(X)  be  such  that (��
�, ���, p1) ≥ (���′, ����, p′′ )  and  

���
�, ���, ��� ≥ (���′, ����, p′′ ) .  

Then A ⊆ p′′ ∗ π(���′, ����).  Similarly B ⊆ p′′ ∗ π(���′, ����). Consequently < S  > = <A∪B> ⊆p′′∗ π(���′, ����) by definition of 

<S> and  this  implies  (���, ���, p′) ≥ (���′, ����,p′′). Define  ′∧′  on  C(X)  by (��
�, ���, p1) ∧ ���

�, ���, ��� = (���, ���, p′).  Thus  

(C(X), ∧)  is  a  lower  semilattice. Hence (C(X), ≥ ) is a lattice. 
 
In the section 2, if Cr(X) be the collection of all regular covering spaces of (X, x), then we will show that (Cr(X), ≥) is a 
sublattice of (C(X), ≥) . Finally, assuming π(X, x) is abelian we will show that (C(X), ≥) is a modular, bounded and 
complete lattice. 
Theorem 2.1: 
(Cr(X), ≥) is a sublattice of (C(X), ≥), where  Cr(X) be  the collection of all regular covering spaces of (X, x). 
Proof :   Here  Cr(X)  =  {(��, ��, p): (��, ��, p)  is  a  regular  covering  space  of (X, x)}. As universal covering is regular,  
so  Cr(X) is  a nonempty  subset of C(X). So it is enough to show that (Cr(X), ≥) is a lattice that is (Cr(X), ∨) is an upper 

semilattice and (Cr(X), ∨) is a lower semilattice.  Let  (��
�, ���, p1),���

�, ���, ��� ∈  Cr(X). Then  H1  =  p1  ∗ π(��
�, ���) and  

H2  =  p2 ∗ π(��
�, ���)  are  normal  subgroups  of  π(X, x). Let  H  =  p1 ∗ π(��

�, ���) ∩ p2 ∗ π(��
�, ���).  Then H  is a (normal) 

subgroup of π(X, x). Hence by  Lamma  1.2,   we  find  a  covering  space  (��, ��, p)  of  (X, x)  such  that p ∗ π(��, ��) = 

H.  As H  is a normal subgroup of π(X, x), (��, ��, p) ∈ Cr(X). Then  p∗π(��, ��)  ⊆ p1 ∗ π(��
�, ���)  ⇔ (��, ��, p)  ≥ (��

�, ���, p1).   
Again,  p ∗ π(��, ��) ⊆ p2 ∗π(��

�, ���) ⇔ (��, ��, p) ≥ (��
�, ���, p2).  Consequently, (��, ��, p) is  an  upper  bound  of  (��

�, ���, 
p1)  and  (��

�, ���, p2).  We  claim  that  (��, ��, p) is the lub of (��
�, ���, p1) and (��

�, ���, p2).  Let (���, ���, p′) ≥ (��
�, ���, p1) and 

(���, ���, p′) ≥ (��
�, ���, p2) in Cr(X).Then p′ ∗ π(���, ���) ⊆ p1 ∗ π(��

�, ���) and p′∗π(���, ���) ⊆ p2∗π(��
�, ���). Consequently, p′ ∗ 

π(���, ���) ⊆ p1∗ π(��
�, ���) ∩ p2 ∗ π(��

�, ���)  =  H  =  p ∗ π(��, ��).   Hence  (���, ���, p′)  ≥ (��, ��, p).  We  now define ′∨′  on  

Cr(X) by the rule (��
�, ���, p1) ∨ ���

�, ���, ���  = (��, ��, p).  Consequently the partially ordered set (Cr(X), ∨) is an upper 

semilattice. 
Again, as H1 and H2 are normal subgroups of π(X, x) , hence < H1∪H2 > = H1 + H2  is a  (normal)subgroup  of π(X, x)  
such  that  H1 ⊆ H1 + H2 and H2 ⊆ H1 + H2. Then by Lemma 1.2, there exists a covering space (��, ��, p)  of  (X, x)  such  
that  p∗π(��, ��)  =  H1  + H2. As  H1  + H2  is  a normal  subgroup  of  π(X, x), (��, ��, p)  ∈ Cr(X).  Now  H1  ⊆ H1 + H2  ⇒ 

p1∗ π(��
�, ���) ⊆ p ∗ π(��, ��)  ⇒ (��

�, ���, p1)  ≥  (��, ��, p). Similarly  H2  ⊆ H1  +  H2  ⇒ (��
�, ���, p2) ≥ (��, ��, p).  

Thus  (��, ��, p)  is  a  lower  bound  of (��
�, ���, p1) and  (��

�, ���, ��).We  claim  that  it  is  their  glb. To  prove  this,  let 
(�� �, ���, p′) ∈ C′(X) be such that (��

�, ���, p1) ≥ (�� �, ���, p′) and (��
�, ���, p2) ≥ (���, ���, p′) . Then H1 ⊆ p′ ∗ π(���, ���). Similarly 

H2⊆ p′ ∗ π(�� �, ���). Consequently H1+H2 ⊆ p′∗π(�� �, ���) and this implies (��, ��, p) ≥ (���, ���, p′) . Define ′∧′  on  Cr(X)  by  

(��
�, ���, p1) ∧ (��

�, ���, ��) = (��, ��, p).  Thus (Cr(X), ∧) is a lower semilattice. Hence (Cr(X), ≥) is a lattice. Hence (Cr(X), 
≥) is a sublattice of (C(X), ≥). 
 
Theorem 2.2 
Let (X, x) be a space such that its fundamental group π(X, x) is abelian. Then (C(X), ≥) is a modular lattice. 
Proof :   By  theorem  1.5,  (C(X), ≥) is  a  lattice. we  need  to  show  that  it is  modular. Let  (��

�, ���, p1), ���
�, ���, ���, 
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(��
�, ���, ��) ∈ C(X)  be  such  that (��

�, ���, p1) ≥ (��
�, ���, p3).We have to show that (��

�, ���, p1) ∨ ((��
�, ���, p2) ∧ 

(��
�, ���, ��))  =  ((��

�, ���, p1) ∨ (��
�, ���, p2) ) ∧ (��

�, ���, ��) . Let A= p1∗ π(��
�, ���),  B = p2 ∗ π(��

�, ���), C = p3∗π(��
�, ���).   

By  definition  of  ’≥’,  it is enough  to  show  that  A + (B ∩ C) = (A + B) ∩ C  as  (A + B), (B ∩ C), A + (B ∩ C) and (A 
+ B) ∩ C are all (normal) subgroups of π(X, x) , as  π(X, x)  is  abelian.  Now (��

�, ���, p1) ≥ (��
�, ���, p3) implies  A  ⊆  C 

which implies A + (B ∩ C) ⊆ (A + B) ∩ C.  So, we have to show that (A + B) ∩ C ⊆ A + (B ∩ C). Let t ∈ (A + B) ∩ C. 
Then t = a + b = c for a ∈ A, b ∈ B and c ∈ C. Thus t − a = b = c − a ∈ B ∩ C as A ⊆ C  and t = a + b ∈ A + (B ∩ C). 
Consequently (A + B) ∩ C ⊆ A + (B ∩ C). Hence A + (B ∩ C) = (A + B) ∩ C. Thus (C(X), ≥) is a modular lattice. 
 
Theorem 2.3 
Let (X, x) be a space such that its fundamental group π(X, x) is abelian. Then (C(X), ≥) is a bounded lattice. 
Proof : Let (X, x) be a space such that its fundamental group π(X, x) is abelian. Now (C(X), ≥) has the top element, the 
universal covering space and has the bottom element, the trivial covering space. Hence (C(X), ≥) is a bounded lattice. 
 
Theorem 2.4 
Let (X, x) be a space such that its fundamental group π(X, x) is abelian. Then (C(X), ≥) is a complete lattice. 
Proof : Let (X, x) be a space such that its fundamental group  π(X, x) is  abelian.    Let  S   =  {(��

�, ���, ��): (��
�, ���, ��)    

∈ C(X), α∈ I (an  indexing  set)} be  a  subset  of  (C(X), ≥).   Let  Aα  =  pα ∗ π(��
�, ���). Then Aα  are  (abelian  and  

normal) subgroups  of the  abelian  group  π(X, x). Let  � =  ⋂ �� ∗ ����
�, �����∈� . Then A  is  a  (abelian  and  normal) 

subgroup  of π(X, x).  Hence  by  Lamma  1.2,  we  find  a  covering  space  (��, ��, p) ∈ C(X) such that p ∗ π(��, ��) = A.  

Now p∗π(��, ��) ⊆ pα ∗ π(��
�, ���) ⇔ (��, ��, p) ≥ (��

�, ���, pα).  Consequently, (��, ��, p) is an upper bound of (��
�, ���, pα).  

We claim that (��, ��, p) is the lub of (��
�, ���, pα).  Let (���, ���, p′) ≥ (��

�, ���, pα) in C(X). Then p′∗π(���, ���) ⊆ pα∗ π(��
�, ���) 

for every α ∈ I. Consequently, p’∗ π(���, ���) ⊆ ⋂ �� ∗ ����
�, �����∈�  = A = p ∗ π(��, ��).   

Hence (���, ���, p′ ) ≥ (��, ��, p).  Hence (��, ��, p) is  the  lub  of  S ={(��
�, ���, pα): (��

�, ���, pα)  ∈ C(X), α ∈ I}. 
That is (��, ��, p) = ⋁ (��

�, ���, ��)�∈�  .  

 Aα, as  Aα  are  (abelian  and normal) subgroups of the  abelian  
group  π(X, x).  Hence  B  is  a  (abelian and normal) subgroup of π(X, x). Hence by Lamma 1.2, we find a covering 
space  (��, ��, p)∈C(X)  such  that p∗π(��, ��)  =  B.   Now each  Aα  ⊆ B implies pα∗π(��

�, ���) ⊆ p ∗ π(��, ��).Thus  (��, ��, p)  
is  a  lower  bound  of  S ={(��

�, ���, pα): (��
�, ���, pα)  ∈ C(X), α ∈ I}. We  claim  that  it  is their  glb. To  prove  this,  let  

(���, ���, p′) ∈ C(X)  be  such  that  ��
�, ���, pα)   ≥ (�� �, ���, p′) . Then  Aα  ⊆ p′ ∗ π(�� �, ���) and  this  implies  (��, ��, p) ≥  

(���, ���, p′).  Thus  (��, ��, p)  is  the  glb  of  S  =  {(��
�, ���, pα):(��

�, ���, pα) ∈ C(X), α ∈ I}. That  is (��, ��, p) = 

⋀ (��
�, ���, ��)�∈�  .  Hence  (C(X), ≥)  is  a  complete lattice. 

 
In the section 3 we give some applications and examples.  
Theorem 3.1 
Let (C(X), ≥) be a complete lattice and f : (C(X), ≥) → (C(X), ≥) be an isotone function. Then f ((��, ��, p)) = (��, ��, p) for 
some (��, ��, p) ∈ C(X).  
Proof :Let  S  = {(���, ���, p′) ∈ C(X) : (���, ���, p′) ≥  f ((���, ���, p′))}. As  S is a subset of the complete lattice (C(X), ), lub 

and glb of  S exist.  Define  (��, ��, p)  as  the  lub  of  S.  As  (��, ��, p)  is  the  lub  of  the  set  S,  we have  (���, ���, p′)≥        

(��, ��, p)  for  all  (���, ���, p′) ∈ S. Now  as  f  is  an  isotone  function,  so  we  have  (���, ���, p′)≥ f (���, ���, p′) ≥ f (��, ��, p)  

for  all (���, ���, p′) ∈ S.  Hence (��, ��, p) = lub S  ≥ f (��, ��, p).  Again as  f  is isotone function, it follows that f (��, ��, p) ≥  

f(f (��, ��, p)), whence f (��, ��, p) ∈ S. Now  since  (��, ��, p)  =  lub S,  it  follows  that  f (��, ��, p) ≥ (��, ��, p). 

 Hence f ((��, ��,, p)) = (��, ��, p). 
 
Example 3.2:  Let T  = S1 × S1 = Torus.  Then π(T ) = Z ⊕ Z, which is abelian. Also ℝ� is an universal covering space 
of  T .Hence,  by Theorem 1.5, (C(T ), ≥) is a lattice, by Theorem 2.2,(C(T ), ≥) is a modular lattice. By Theorem 2.3 
it is a bounded lattice and by Theorem 2.4 , it is a complete lattice. 
 
Example  3.3:  Let ℝPn be the real projective n-space.  π(ℝPn) = C2, which is a cyclic group of order 2, hence an 
abelian group. Again Sn is an universal covering space of ℝPn for n ≥ 2. Hence, by theorem 1.5, (C(ℝPn), ≥) is a lattice 
for n ≥ 2, by theorem 2.2,(C(ℝPn), ≥) is a modular lattice for n ≥ 2.  By theorem 2.3 it is a bounded lattice for n ≥ 2 
and by theorem 2.4 ,it is a complete lattice for n ≥ 2. 
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