

ON ROTATION MIXED TYPE SURFACES IN LORENTZ-MINKOWSKI SPACE

Serpil KARAGÖZ*

Department of Mathematics, Faculty of Arts and Science, Bolu Abant İzzet Baysal University, 14030, Bolu, Türkiye,

*Corresponding Author: -

ABSTRACT

In this paper, we study on rotational mixed type surfaces and give two theorems about degeneracy of first fundamental form.

1. INTRODUCTION

It is known that every closed surface in L^3 must be of mixed type [1]. The first fundamental form of a mixed type surface is type-changing metric. Type-changing metrics are of interest both mathematics and theoretical physics[2].[3].

Definition 1.1 Let us denote by L^3 the Lorentz-Minkowski 3-space of signature (+ + -). Concider an embedded surface S in L^3 . The induced metric of S might be either positive definite, indefinite or degenerate. According to such properties, a point on the surface S is said to be spacelike, timelike or lightlike. If the spacelike, timelike and lightlike point sets are all non-empty, the surface S is said to be *a mixed type surface* [4]

Definition 1.2 A surface is called a *rotation surface* with axis l if it is invariant under the action of the group of motions in L^3 which fix each point of the line l. [5]. The main result of this paper is as follows:

Theorem A: Let $f: \Sigma \to L^3$ be a mixed type rotation surface given by

f(u, v) = (u, f(u)cosv, f(u)sinv)

with the first fundamental form

 $ds^2 = Edu^2 + 2Fdudv + Gdv^2$ and discriminant function $\lambda \coloneqq EG - F^2$ If $f_u \perp f_v$ and $\lambda \coloneqq EG - F^2 = 0$, where $f_u \coloneqq df(\partial_u)$ and $f_v \coloneqq df(\partial_v)$ then the surface is either a cylinder or a cone.

Theorem B: Let $f: \Sigma \to L^3$ be a mixed type rotation surface given by

$$f(u, v) = (g(u)sinhv, u, g(u)coshv)$$

with the first fundamental form

 $ds^2 = Edu^2 + 2Fdudv + Gdv^2$ and discriminant function $\lambda \coloneqq EG - F^2$ If $\lambda \coloneqq EG - F^2 = 0$, then the surface is an hyperboloid of two-sheets.

2. PRELIMINARIES

We denote by L^3 the Lorentz-Minkowski 3-space with the standard Lorentz metric

 $\langle x, x \rangle_{L} = x_{1}^{2} + x_{2}^{2} - x_{3}^{2}; x = \sum_{i=1}^{3} x_{i}e_{i} \in L^{3}$ where $S \coloneqq (0 \ 1 \ 0)$, $e_{1} \coloneqq (0)$ $e_{2} \coloneqq (1)$ $e_{3} \coloneqq (0)$ $0 \ 0 \ -1$ $0 \ 0$ 1A vector $x \in L^{3}$ $(x \neq 0)$ is said to be spacelike if $\langle x, x \rangle_{L} > 0$, timelike if $\langle x, x \rangle_{L} = 0$.

2.1 Mixed type surfaces In this paper, a surface in L^3 is defined to be an embedding $f: \Sigma \to L^3$ of a connected differentiable 2-manifold Σ . A point $p \in \Sigma$ is said to be a lightlike (resp. spacelike, timelike) point if the image $V_p \coloneqq df_p(T_p\Sigma)$ of the tangent space $T_p\Sigma$ is lightlike (resp. spacelike, timelike) 2-subspace of L^3 . We denote by LD the set of lightlike points, Σ_+ the set of spacelike points and Σ_- the set of timelike points. If both Σ_+ and Σ_- are non-empt, the surface is called a mixed type surface.Denote by ds^2 the first fundamental form of f. ds^2 is the smooth metric on Σ defined by $ds^2 \coloneqq f^* < , >_L$. Then $p \in \Sigma$ is a lightlike point if and only if $(ds^2)_p$ degenerate as a symmetric bilinear form on $T_p\Sigma$. Similarly $p \in \Sigma$ is a spacelike (resp. timelike) point if and only if $(ds^2)_p$ is positive definite (resp. indefinite). Take a local coordinate neighborhood (U; u, v) of Σ . Set

 $f_u := df(\partial u) f_v := df(\partial v)$. Then ds^2 is written as

 $ds^2 = Edu^2 + 2Fdudv + Gdv^2$

where $E \coloneqq \langle f_u, f_u \rangle_L$, $F \coloneqq \langle f_u, f_v \rangle_L$, $G \coloneqq \langle f_v, f_v \rangle_L$

If $\lambda := EG - F^2$ then a point $q \in U$ is lightlike (resp. spacelike, timelike) point if and only if $\lambda(q) = 0$ (*resp.* $\lambda(q) > 0$, $\lambda(q) < 0$) holds. λ is called as *discriminant function*.

2.2 Rotation surfaces In this paper, a rotation surface in L^3 is given by timelike axis as x-axis and spacelike axis as y-axis then the surface is expressed as follows:

f(u, v) = (u, f(u)cosv, f(u)sinv) if the axis is timelike; f(u, v) = (g(u)sinhv, u, g(u)coshv) if the axis is spacelike.

3. PROOF OF MAIN RESULTS

In this section we give the proofs of theorem A and theorem B in the introduction.

3.1 Proof of theorem A Let $f: \Sigma \to L^3$ be a rotation mixed type surface given by

f(u, v) = (u, f(u)cosv, f(u)sinv)Then by direct calculation we obtain $EG - F^{2} = (1 + f^{2}cos2v)(-f^{2}cos2v) - f^{2}f^{2}sin^{2}2v$ $where f = \frac{df}{du} \text{ and } f = f(u)$ If $f_{u} \perp f_{v}$ then $f^{2}f^{2}sin^{2}2v = 0$.

We have two cases; $f^2 f^2 = 0$ or $sin^2 2v = 0$

Case1: If $f^2 f^2 = 0$ then f = c where c is a constant.

Case2: If $sin^2 2v = 0$ then $v = 0, \pi$ or $\frac{\pi}{2}$

For discriminant function we have

$$-c^{2}cos2v \quad if \quad f^{2}f^{2} = 0$$

$$EG - F^{2} = -f^{2}(1 + f^{2}) \quad if \quad v = 0, \pi$$

$$f^{2}(1 - f^{2}) \quad if \quad v = \frac{\pi}{2}$$

$$\{ \qquad \qquad 2 \end{cases}$$

 $EG - F^2 = 0$ then f(u) = c or f(u) = u + k, k any constant

That means surface is a cylinder or a cone.

3.2 Proof of theorem B Let $f: \Sigma \to L^3$ be a rotation mixed type surface given by

$$f(u, v) = (g(u)sinhv, u, g(u)coshv)$$

Then by direct calculation we obtain
$$EG - F^{2} = g^{2}(1 - \dot{g}^{2})$$
$$\frac{dg}{du}$$
$$where \ \dot{g} = \frac{1}{du} and \ g = g(u)$$
$$EG - F^{2} = 0 then \ g^{2} = 0 or \ (1 - \dot{g}^{2}) = 0$$

Case1: If g(u) = 0 then f does not describe a surface

Case2: If $(1 - \dot{g}^2) = 0$ then $g(u) = \mp u + k$ where k is any constant. That means surface is hyperboloid of two sheets.

REFERENCES

[1]. F. Tari, Umbilics of surfaces in the Minkowski 3-space, J. Math. Soc. Japan 65 (2013), 723–731.

[2].N.G. Pavlova and A.O. Remizov, A brief survey on singularities of geodesic flows in smooth

signature changing metrics on 2-surfaces, In: Ara´ujo dos Santos R., Menegon Neto A., Mond D., Saia M., Snoussi J. (eds) Singularities and Foliations. Geometry, Topology and Applications. NBMS 2015, BMMS 2015. Springer Proceedings in Mathematics & Statistics, pp 135–155 (2018), vol 222. Springer, Cham.

[3]. A. Honda, K. Saji, and K. Teramoto, Mixed type surfaces with bounded Gaussian curvature

in three-dimensional Lorentzian manifolds, preprint, arXiv:1811.11392.

[4]. A. Honda,Isometric deformations of mixed type surfaces in Lorentz-Minkowski space ,arXiv:1908.01967v1

[5].O.Kobayashi, Maximal surfaces in the3-dimensional Minkowski space L^3 , J. Math.Tokyo(1983) Vol.6 No.2