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Abstract: In this paper, we present some applications of oscillation criteria for fractional differential and
difference equations. The presented examples consist of both continuous and discrete analysis as special
cases.
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1 Introduction

Oscillation belongs to the range of qualitative properties analysis. In the last few decades, research for
oscillation of various equations including differential equations, difference equations has been a hot topic
in the literature, and much effort has been done to establish new oscillatory criteria for these equations
so far (for example, see [1-12], and the references therein).

In this paper, we present some applications for oscillation of some fractional differential and differ-
ence equations with damping term, where the fractional derivative is defined as the conformable fractional
derivative [13]. These fractional differential and difference equations are special cases of the following
conformable fractional dynamic equation with damping term on time scales:

(a(t)[r(t)x(α)(t)](α))(α)+p(t)[r(t)x(α)(t)](α)+q(t)x(t) = 0, t ∈ T0, (1.1)
where α ∈ (0, 1], T is an arbitrary time scale, T0 = [t0,∞)

∩
T, t0 > 0, a, r, p, q ∈ Crd(T0,R+). For the

sake of convenience, denote δ1(t, ti) =
∫ t
ti

e− p̃
a
(s, t0)

a(s)
∆αs, where p̃(t) = tα−1p(t).

2 Applications

Based on the obtained results in [14, 15], we will present some applications for the established results
above.

2.1 Fractional differential equation

First we consider the following fractional differential equation with damping term:

{
√
t[t−

1
2x(

1
2
)(t)](

1
2
)}(

1
2
)+ t−

5
2 [t−

1
2x(

1
2
)(t)](

1
2
)+ t−

3
2x(t) = 0, t ∈ [2,∞). (2.1)

Related to (1.1), one has T = R, α = 1
2 , a(t) =

√
t, p(t) = t−

5
2 , q(t) = t−

3
2 , p̃(t) = t−

1
2 p(t) =

t−3, r(t) = t−
1
2 , t0 = 2. So µ(t) = σ(t) − t = 0, which means − p̃

a ∈ R+. Then e− p̃
a
(t, t0) = e− p̃

a
(t, 2) =

exp(−
∫ t
2
p̃(s)
a(s)

ds). Moreover,
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1 > exp(−
∫ t
2
p̃(s)
a(s)

ds) ≥ 1−
∫ t
2
p̃(s)
a(s)

ds = 1−
∫ t
2 s

− 7
2ds = 1 + 2

5[t
− 5

2 − 2−
5
2 ] > 3

5 .

So one can deduce that

∫∞
t0

e− p̃
a
(s, t0)

a(s)
∆αs =

∫∞
t0

e− p̃
a
(s, t0)

a(s)
sα−1∆s =

∫∞
t0

e− p̃
a
(s, t0)

a(s)
sα−1ds

> 3
5

∫∞
2

1√
s
sα−1ds = 3

5

∫∞
2

1
sds = ∞,

and∫∞
t0

1
r(s)

∆αs =
∫∞
t0

1
r(s)

s−
1
2ds =

∫∞
t0

1ds = ∞.

Furthermore, one has

∫∞
t0

[ 1
r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]∆αξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ τα−1(

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)sα−1

e− p̃
a
(σ(s), t0)

∆s)∆τ ]∆ξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ τα−1(

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)sα−1

e− p̃
a
(σ(s), t0)

ds)dτ ]dξ

=
∫∞
2 [

∫∞
ξ τ−

1
2 (
e− p̃

a
(τ, 2)
√
τ

∫∞
τ

1
s2e− p̃

a
(s, 2)

ds)dτ ]dξ

> 3
5

∫∞
2 [

∫∞
ξ ( 1τ

∫∞
τ

1
s2

ds)dτ ]dξ = 3
5

∫∞
2 [

∫∞
ξ

1
τ2

dτ ]dξ = 3
5

∫∞
2

1
ξ
dξ = ∞.

On the other hand, for a sufficiently large t2, we have

δ1(t, t2) =
∫ t
t2

e− p̃
a
(s, t0)

a(s)
∆αs =

∫ t
t2

e− p̃
a
(s, t0)

a(s)
sα−1∆s

=
∫ t
t2

e− p̃
a
(s, t0)

a(s)
sα−1ds > 3

5

∫ t
t2
1
sds → ∞ (t → ∞).

So there exists a sufficiently large t3 > t2 such that δ1(t, t2) > 1 for t ∈ [t3,∞).
Setting ϕ(t) = t, φ(t) = 0 in [14, (2.9)], one can obtain that

∫ t
t3
[q(s)

ϕ(s)
e− p̃

a
(σ(s), t0)

− s2−2α(ϕ′(s))2r(s)
4ϕ(s)δ1(s, t2)

]sα−1ds >
∫ t
t3
(1s − 1

4s)ds =
∫ t
t3

3
4sds → ∞ (t → ∞).

From the analysis above one can see [14, (2.6)-(2.9)] all hold. So it follows from [14, Corollary 2.2]
that every solution of Eq. (2.1) is oscillatory or tends to zero.

2.2 Fractional difference equation

Next we consider the following fractional difference equation:

∆( 1
2
){
√
t∆( 1

2
)[t−

1
2∆( 1

2
)x(t)]}+t−

5
2∆( 1

2
)[t−

1
2∆( 1

2
)x(t)]+t−

3
2x(t) = 0, t ∈ [2,∞)Z, (2.2)

where ∆( 1
2
) denotes the fractional difference operator of order 1

2.

Related to (1.1), one has T = Z, α = 1
2 , a(t) =

√
t, p(t) = t−

5
2 , q(t) = t−

3
2 , p̃(t) = t−

1
2 p(t) =

t−3, r(t) = t−
1
2 , t0 = 2. Then µ(t) = σ(t)− t = 1, and
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1− µ(t)
p̃(t)
a(t)

= 1− t−
7
2 ≥ 1− t−3 ≥ 1− 1

23
> 0,

which means − p̃
a ∈ R+. So according to [16, Lemma 2] one can obtain that

e− p̃
a
(t, t0) = e− p̃

a
(t, 2) ≥ 1−

∫ t
2
p̃(s)
a(s)

∆s = 1−
∫ t
2 s

− 7
2∆s = 1−

t−1∑
s=2

s−
7
2

≥ 1−
∫ t−1
1 s−

7
2ds = 1 + 2

5[(t− 1)−
5
2 − 1] > 3

5 ,

and

e− p̃
a
(t, t0) ≤ exp(−

∫ t
2
p̃(s)
a(s)

∆s) < 1.

To use [14, Corollary 2.3], one needs to verify [14, (2.10)-(2.13)]. To this end, one has

∞∑
s=t0

e− p̃
a
(s, t0)

a(s)
sα−1 =

∞∑
s=2

e− p̃
a
(s, 2)

a(s)
sα−1 =

∞∑
s=2

e− p̃
a
(s, 2)

s > 3
5

∞∑
s=2

1
s = ∞,

and

∞∑
s=t0

1
r(s)

sα−1 =
∞∑
s=2

1 = ∞.

Furthermore,

∞∑
ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(
e− p̃

a
(τ, t0)

a(τ)

∞∑
s=τ

q(s)sα−1

e− p̃
a
(s+ 1, t0)

)] =
∞∑

ξ=t0

[
ξα−1

r(ξ)

∞∑
τ=ξ

τα−1(
e− p̃

a
(τ, 2)

a(τ)

∞∑
s=τ

q(s)sα−1

e− p̃
a
(s+ 1, 2)

)]

> 3
5

∞∑
ξ=2

[
∞∑
τ=ξ

( 1τ

∞∑
s=τ

1
s2

)] > 3
5

∞∑
ξ=2

[
∞∑
τ=ξ

( 1τ

∞∑
s=τ

1
s(s+ 1)

)] = 3
5

∞∑
ξ=2

∞∑
τ=ξ

1
τ2

> 3
5

∞∑
ξ=2

∞∑
τ=ξ

1
τ(τ + 1)

= 3
5

∞∑
ξ=2

1
ξ
= ∞.

So [14, (2.10)-(2.12)] hold. Moreover, since for a sufficiently large t2, it holds that

δ1(t, t2) =
t−1∑
s=t2

e− p̃
a
(s, t0)

a(s)
sα−1 > 3

5

t−1∑
s=t2

1
s → ∞ (t → ∞),

then there exists t3 > t2 such that δ1(t, t2) > 1 for t ∈ [t3,∞)Z. If we let ϕ(t) = t, φ(t) = 0 in
[14, (2.13)], then one can obtain that

t−1∑
s=t3

[q(s)
ϕ(s)

e− p̃
a
(s+ 1, t0)

− s2−2α(ϕ(s+ 1)− ϕ(s))2r(s)
4ϕ(s)δ1(s, t2)

]sα−1 >
t−1∑
s=t3

(1s − 1
4s) =

t−1∑
s=t3

3
4s → ∞ (t → ∞).

So [14, (2.13)] also holds. After an application of [14, Corollary 2.3] one can see that every solution
of Eq. (2.2) is oscillatory or tends to zero.

2.3 Fractional q− difference equation

Finally we consider the following fractional q− difference equation:

∆( 3
5
){t0.6∆( 3

5
)[t−0.4∆( 3

5
)x(t)]}+t−2.4∆( 3

5
)[t−0.4∆( 3

5
)x(t)]+t−1.6x(t) = 0, t ∈ [β,∞)βZ , (2.3)

where ∆( 3
5
) denotes the fractional difference operator of order 3

5 , β ≥ 2.

Related to (1.1), one has T = βZ, α = 3
5 , a(t) = t0.6, p(t) = t−2.4, q(t) = t−1.6, p̃(t) = t−0.4p(t) =
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t−2.8, r(t) = t−0.4, t0 = β. Then µ(t) = σ(t)− t = t(β − 1), and considering t ≥ β, one has

1− µ(t)
p̃(t)
a(t)

= 1− t(β − 1) 1
t3.4

= 1− (β − 1) 1
t2.4

≥ 1− (β − 1) 1
β2 =

β2 − β + 1
β2 > 0,

which means − p̃
a ∈ R+. So we obtain

e− p̃
a
(t, t0) = e− p̃

a
(t, β) ≥ 1−

∫ t
β
p̃(s)
a(s)

∆s = 1−
∫ t
β

1
s3.4

∆s ≥ 1−
∫ t
β
1
s3

∆s = 1− (β − 1)
t−2 − β−2

β−2 − 1

=
1 + (β − 1)t−2 − β−1

1− β−2 >
1− β−1

1− β−2 ≥ 1
2− 2β−2 =

β2

2(β2 − 1)
,

and

e− p̃
a
(t, t0) ≤ exp(−

∫ t
q
p̃(s)
a(s)

∆s) < 1.

Now we verify the following conditions:

∫∞
t0

e− p̃
a
(s, t0)

a(s)
∆αs =

∫∞
β

e− p̃
a
(s, β)

a(s)
sα−1∆s =

∫∞
β

e− p̃
a
(s, β)

s ∆s >
β2

2(β2 − 1)

∫∞
β

1
s∆s = ∞,

and∫∞
t0

1
r(s)

∆αs =
∫∞
t0

1
r(s)

sα−1∆s =
∫∞
t0

1∆s = ∞.

Furthermore,

∫ t
t0
[ 1
r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]∆αξ

=
∫∞
t0

ξα−1[ 1
r(ξ)

∫∞
ξ τα−1(

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)sα−1

e− p̃
a
(σ(s), t0)

∆s)∆τ ]∆ξ

=
∫∞
β ξα−1[ 1

r(ξ)

∫∞
ξ τα−1(

e− p̃
a
(τ, β)

a(τ)

∫∞
τ

q(s)sα−1

e− p̃
a
(σ(s), β)

∆s)∆τ ]∆ξ

>
β2

2(β2 − 1)

∫∞
β [

∫∞
ξ ( 1τ

∫∞
τ

1
s2

∆s)∆τ ]∆ξ >
β2

2(β2 − 1)

∫∞
β [

∫∞
ξ ( 1τ

∫∞
τ

1
sσ(s)

∆s)∆τ ]∆ξ

=
β2

2(β2 − 1)

∫∞
β [

∫∞
ξ ( 1τ [−

1
s ]

∞
τ )∆τ ]∆ξ =

β2

2(β2 − 1)

∫∞
β [

∫∞
ξ

1
τ2

∆τ ]∆ξ >
β2

2(β2 − 1)

∫∞
β [

∫∞
ξ

1
τσ(τ)

∆τ ]∆ξ

=
β2

2(β2 − 1)

∫∞
β

1
ξ
∆ξ = ∞.

On the other hand, one can see for a sufficiently large t2 that

δ1(t, t2) =
∫ t
t2

e− p̃
a
(s, t0)

a(s)
∆αs =

∫ t
t2

e− p̃
a
(s, t0)

a(s)
sα−1∆s >

β2

2(β2 − 1)

∫ t
t2
1
s∆s → ∞ (t → ∞).

So there exists t3 > t2 such that δ1(t, t2) > 1 for t ∈ [t3,∞)qZ .
To use [15, Theorem 2.2], let m = 1, ϕ(t) = t, φ(t) = 0 in [15, (2.4)], and one has

lim
t→∞

sup 1
(t− t0)

{
∫ t
t3
[(t− s)q(s)

ϕ(s)
e− p̃

a
(σ(s), t0)

− (ϕ(α)(s))2r(s)
4ϕ(s)δ1(s, t2)

]∆αs}

= lim
t→∞

sup 1
(t− t0)

{
∫ t
t3
[(t− s)q(s)

ϕ(s)
e− p̃

a
(σ(s), t0)

− s2−2α(ϕ∆(s))2r(s)
4ϕ(s)δ1(s, t2)

]sα−1∆s}
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> lim
t→∞

sup 1
(t− t0)

∫ t
t3
(t− s) 34s∆s = lim

t→∞
sup[ t

(t− β)

∫ t
t3

3
4s∆s− 3(t− t2)

4(t− β)
] = ∞,

which means [15, (2.4)] also holds, and by [15, Theorem 2.2] one can deduce that every solution of
Eq. (2.3) is oscillatory or tends to zero.

3 Conclusions

In this paper, we have presented some applications for the oscillation criteria for certain fractional dif-
ferential equations, fractional difference equations and fractional q− difference equations. The validity of
the established results are illustrated by three corresponding examples.
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