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ABSTRACT
One of the major problems in AI and Deep Learning is Commonsense Reasoning. As easy as it
is for humans to perform certain tasks without having to think and waste much time, machines
have difficulties in performing those tasks without necessarily been programmed.The Winograd
schema is one of the recommended ways for testing the Commonsense reasoning ability of ma-
chines. It is difficult for machines to answer this Winograd Schema. In this work, we propose the
use of neural network based on Language Models in tackling this problem. Our network takes
in only word inputs for the training on large vocabulary size. This model attains an accuracy of
54.58 percent when ran on the Winograd Schema Challenge.

1. Introduction
Throughout human history, people have used technology to model themselves. There is evidence of this from an-

cient China, Egypt, and Greece that bears witness to the universality of this activity [1]. According to [2], Artificial
Intelligence (AI) is the art, science and engineering of making intelligent agents, machines and programs. The field
aims at providing solutions for one simple yet extremely tough objective, ’Can machines think and reason like hu-
man beings?’ The central goal of AI is to understand the principles that make intelligent behavior possible in natural
or artificial systems [1]. Some objectives of AI include emulation of cognitive learning, semantics, and knowledge
representation, learning, reasoning, problem solving, planning and natural language processing [3]. Some researchers
say that the problem of automating human reasoning is the lack of commonsense knowledge or commonsense rea-
soning. In the paper [4], this was explicitly stated when the authors said that current computer programs intended for
tackling language tasks succeed only by manipulating individual words or short phrases. Common sense is usually
evaded in order to just focus on short-term results. Unfortunately, it is hard to see how human level understanding
can be achieved without greater attention to common sense. This can also be seen in the book [5] when the author
pointed out the common difficulty of creating a thinking machine is the result of the lack of common sense knowledge
in AI programs. Commonsense knowledge as opposed to specialized knowledge refers to the things that most people
can do, often without conscious thought. In [6], the authors stated that an important research problem in AI is the
logical formalization of common sense reasoning. [7] presents three reasons why AI should emphasize on common-
sense reasoning rather than scientific knowledge. Several researchers [5] have tackled the problem of understanding
commonsense reasoning.

[8] described a simple neural language model that relies only on character-level inputs. Their model employs a
convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-
term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank [11], the
model is on par with the existing state-of-the-art despite having sixty percent fewer parameters. On languages with
rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model out-performs word-level/morpheme-
level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are
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Commonsense Reasoning

sufficient for language modeling. Analysis of word representations obtained from the character composition part of
the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.

[10] considered two recurrent Language Models (LMs) where one processes word inputs while the other processes
character inputs. While the input layers takes both word and character inputs, the output layer was designed to give
only word output. Their base model consists of two Long Short-Term Memory (LSTM) with 8192 hidden units. The
output gate of each LSTM uses peepholes and a projection layer to reduce its output dimensionality to 1024. They
performed drop-out on LSTM’s outputs with probability 0.25. For word inputs, they used an embedding lookup of
800000 words, each with dimension 1024. For character inputs, they use an embedding lookup of 256 characters, each
with dimension 16. They concatenated all characters in each word into a tensor of shape (word length, 16) and add
to its two ends the < beginofword > and < endofword > tokens. The resulting concatenation was zero-padded to
produce a fixed size tensor of shape (50, 16). This tensor was then processed by eight different 1-D convolution (Conv)
kernels of different sizes and number of output channels, each followed by a Rectified Linear Units (ReLU) activation.

We follow from the works of [8] and [10], that is we use the Neural Network approach but we use only word inputs
in training our model. It should be noted that in [8], only character inputs were used while both character and word
inputs were used in [10]. We choose to use only word inputs since the use of only characters and or both character and
word inputs in training a neural network model may lead to the creation of a supper bot and not a thinking machine.
Since a reasoning machine is desired, we think it is reasonable and intuitive to allow the machine to interact with only
the words in a language (English for example). The previous works as have already been mentioned involved the use
of convolutional neural network but our do not implement that in our work.

2. Language Models (LMs)
Language modeling [12] is the task of assigning a probability to sentences in a language (’what is the probability

of seeing the sentence the lazy dog barked loudly ?’). Besides assigning a probability to each sequence of words, the
language models also assigns a probability for the likelihood of a given word (or a sequence of words) to follow a
sequence of words (’what is the probability of seeing the word barked after the seeing sequence the lazy dog ?’). The
probability [10] is able to be assigned to any given text based on what the LMs have learned from training data.

Formally, the task of language modeling is to assign a probability to any sequence of words w1∶n, i.e. to estimate
P (w1∶n). Using the chain-rule of probability, this can be rewritten as:

P (w1∶n) = P (w1)P (w2 ∣ w1)P (w3 ∣ w1∶2)P (w4 ∣ w1∶3)…P (wn ∣ w1∶n−1) (1)
That is, a sequence of word-prediction tasks where each word is predicted conditioned on the preceding words. Even
though it seems manageable to model the probability of the occurrence of a single word based on its left context
than assigning a probability score to an entire sentence, the last term in the equation, still requires conditioning on
n − 1 words, which is as hard as modeling an entire sentence. For this reason, language models make use of the
markov-assumption , stating that the future is independent of the past given the present. More formally, a kth order
markov-assumption assumes that the next word in a sequence depends only on the last k words:

P (wi+1 ∣ w1∶i) ≈ P (wi+1 ∣ wi−k∶i).
Estimating the probability of the sentence then becomes

P (wi∶n) ≈
n
∏

i=1
P (wi ∣ wi−k∶i−1) (2)

wherew−k+1,…w0 are defined to be special padding symbols. The task is then to accurately estimateP (wi+1 ∣ wi−k∶i)given large amounts of text.
LMs [10] are trained on text corpora, which encodes human knowledge in the form of natural language.

3. Data and Model Formulation
We used the BrownCorpus that comes with the Natural Language Toolkit (NLTK) in Python. In our neural network

model, we take only word inputs unlike that in the current state-of-the-art where both word inputs and character inputs
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are taken. This model only requires that the vocabulary size be large. Intuitively, humans know what they know as a
result of their interactions with the things around them. It is, therefore, logical that the vocabulary size for training be
large. This means that the machine should have seen sentences or words similar to those in the Winograd Schema. In
the current state-of-the-art, an embedding look-up of 800000 words was used. The data and the saved model files of
the current-state-of-the-art is about 280 Gigabytes. In our case, we use about 2300 sentences, approximately 371350
words in embedding look-up layer. We did not perform any drop-outs since our data is really small. Brown corpus,
from which our data was extracted, contains about 57340 sentences which is about 1318820 words.

4. Results
Our model returns the probability of the occurrence of a sentence using language models. Based on this, we wrote

a python function that takes in two sentences, the Winograd pair for example, and returns the sentence with the highest
probability as the the correct answer as in Figure 2.

Figure 1: Function takes in two sentences and selects the correct one

Figure 2: Function takes in two sentences and selects the correct one
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Figure 3: Model predicts probability of correct sentence
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Figure 4: Model predicts probability of wrong sentence
Figures 4 and 3 shows the conditional probabilities output by the model.
We visualize these probabilities in another test pair of correct sentence and wrong sentence in 5 and 6 respectively

Figure 5: Conditional probabilities of words in a correct sentence
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Figure 6: Conditional probabilities of words in a wrong sentencey
It can be seen in figures 5 and 6 that the obvious difference between the two sentences starts from the columns

labeled "advocated" and "feared" respectively. The probability value for "feared" is so small and close to 0. On the
contrary, the probability of "advocated" in figure 5 is seen a bit. This is the condition that the word "advocated" appears
in the sentence on condition that the other words to its left have already appeared.
5. Testing Model on the Winograd Schema

As can be seen from Figure 7 below, our model as tested on the Winograd Schema Challenge attains an accuracy
of about 54.58 percent, thus it answers over 140 questions correctly out of the 273 questions. It is unable to make a
decision on about 60 questions; and it answers about 60 questions wrongly. This is as a result of insufficient training
data.

Bagiliko et al.: Preprint submitted to Elsevier Page 6 of 8
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Figure 7: Model answers over 140 questions correctly

6. Discussion
It should be noted that our contribution in this work is the use of only word input in our neural network model

while both character and word inputs were used in the current state of the art. In figure 1 is the output of our python
function which calls our model and runs it on two sentences (one correct sentence and one wrong sentence). We see
the probabilities of each word displayed. In Figure 2, it is clear that our model is able to compute the probabilities of
each of the two sentences. Figure 3 displays the probabilities of words in a correct sentence while figure 4 displays
probabilities of words in a wrong sentence. Figure 5 and Figure 6 visualize the probabilities of words in a correct
sentence and a wrong sentence respectively. The difference between the two bar graphs can be seen by considering the
last two bars in each. The last but one bar in the correct sentence (figure 5) is higher than the one in the wrong sentence
(Figure 6). This indicates that the probability of the word "advocated" appearing in Figure 5 to make the sentence
correct is higher than the probability of the word "feared" appearing in that same position of the sentence as in Figure
6. This is further seen in the last bars in both sentences. The last bar in Figure 5 is far higher than that in Figure 6 for the
same reason. It could be concluded that our model is able to detect some special words that either make the sentence
correct or wrong. Better still, all the bars in the two figures are similar except the last two bars. The special word is
detected as soon as it makes one of the sentences wrong while another word, appearing in that same position, makes
the sentence correct. The difference in the probabilities is seen clearly in the two figures. Finally, Figure 7 displays
the results of our model when tested on the Winograd schema dataset (it is made up of 273 questions). The figure
indicates that our model is able to answer about 150 questions correctly; it is unable to make a decision on about 60
questions and answers about 60 wrongly. The fact that it could not make a decision on some questions while answering
some wrongly may be due to the limited size of our training dataset. It may be realized that our results is not bad as
compared to that in the current state-of-the-art even though our training dataset was very small. This is due to fact that
our training dataset and majority of their training datasets come from the same source and may have similar statistics.
Also, it could be due to the fact that some words in our vocabulary have repeated themselves multiple times in their
training dataset since theirs is very large.
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7. Conclusions
At the end of the work, we have been able to perform the following pertaining to our objectives:
• extract and synthesize textual data (corpora) for analysis such as the Brown’s corpus from the NLTK package

and also the Winograd Schema questions from [10].
• train a neural model (neural network) on the training data (corpus) based on language models
• test this model on some of the Winograd Schema Challenge questions and the model answers questions with an

accuracy of 54.58 percent.
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