One Radius Theorem

Harmonic Function Theory

Dimitra Alexiou ${ }^{1}$, Evlampia Athanailidou ${ }^{2}$

Import

The present paper deals with the study of harmonic and analytical functions. It deals with well-known and powerful theorems of the Complex Analysis and has as its central theme the One-Radius Theorem, somehow reversing the Mean Value theorem of harmonic functions. These considerations are set out in Mark A. Pinsky's article [Mean Values and the Maximum Principle: A Proof in Search of More Theorems].

Purpose

Our goal is to prove that in the One-Radius Theorem, the precondition of continuity of u in closed $\bar{D}(R)$ and not simply in $D(R)$, is necessary.

Methodology

For this reason, we will give an example in which we construct a function u continuous to $D(R)$, which satisfies the other conditions of the theorem and yet it is not harmonic to $D(R)$.

Before proceeding with the presentation, we should recall basic concepts of Complex Analysis. We will formulate definitions and theorems that are simply referred or used in this paper.

Definition 0.0.1 A set $S \subset \mathbb{C}$ is coherent if there are no subsets of $\mathbb{C}, A, B \neq$ \varnothing, open to S with the following properties: $S=A \cup B$ and $A \cap B=\varnothing$. So, we call S a coherent set of \mathbb{C} if this can not be written as a union of two foreign, non-empty and open to the S sets. Otherwise, S is called non-coherent. An open and coherent set is called a place.

Definition 0.0.2 A real function $u(x, y)$ that is twice productive and satisfies the Laplace equation

$$
u_{x x}+u_{y y}=0
$$

in a place D is called harmonic in D.
Definition 0.0.3 We say that a function $u=u(x, y)$ from place Ω to \mathbb{R} has the property of Mean Value in Ω, if it is true

$$
u(a, b)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(a+R \cos \theta, a+R \sin \theta) d \theta, \forall \bar{D}(a, b ; R) \subset \Omega
$$

That is, the value of u in the center of the disk is equal to the average of its values on the periphery of the disk.

[^0]Theorem 0.0.4 (Mean Value for Harmonic Functions) If u is a harmonic function on disk $D(a, b ; R) \subset \Omega$ and continuous in $\bar{\Omega}$, then it has the property of mean value in D.

One-Radius Theorems

We know that the Mean Value attribute characterizes the harmonic functions. In particular, if $u \mathrm{u}$ is a continuous function from the place Ω to \mathbb{R} and satisfies the property of Mean Value in Ω, then it is harmonic and C^{∞} in it. Then follows the One-Radius Theorem, a form of inversion of the Mean Value Theorem.

Theorem 0.0.5 (Theorem of One Radius) Suppose $u=u(x, y)$) is a continuous function in the disk $\bar{D}(R)$. If $\forall(x, y) \in D, \exists r=r(x, y)$ with $0<r \leq R-\sqrt{x^{2}+y^{2}}$ and such that it is valid

$$
u(x, y)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(x+r \cos \theta, y+r \sin \theta) d \theta
$$

then u is harmonic and C^{2} in $D(R)$.

Then we will show that in the theorem of one radius, the condition of continuity of u in the closed $\bar{D}(R)$ and not just in $D(R)$, is necessary. Indeed, below, we will give an example in which a continuous function u in $D(R)$ satisfies the other conditions of the theorem and is nonetheless harmonic in $D(R)$.

Example 0.0.6 Suppose the function $u(z)=\log |z|$. u is continuous and harmonic at \mathbb{C}^{*}. Therefore, if

$$
\Delta=\left\{z \in \mathbb{C}: r_{1} \leq|z| \leq r_{2}\right\}
$$

is a ring, we can find a harmonic function in Δ that takes any fixed values in the inner and outer circle, putting $u(z)=b \log |z|+a$ for appropriate a, b. So we suppose the rings

$$
\Delta_{n}=\left\{z \in \mathbb{C}: 1-\frac{1}{2^{n}} \leq|z| \leq 1-\frac{1}{2^{n+1}}\right\}, n=0,1,2, \ldots
$$

and define the function

$$
u(z)=u_{n}(z), \forall z \in \Delta_{n}
$$

with

$$
u_{n}(z)=a_{n}+b_{n} \log |z|, n=1,2, \ldots
$$

and

$$
u_{0}(z)=\left\{\begin{array}{l}
0,0 \leq|z| \leq \frac{1}{4} \\
a_{0}+b_{0} \log |z|, \frac{1}{4} \leq|z| \leq \frac{1}{2}
\end{array}\right.
$$

Where

$$
\begin{gathered}
a_{0}=-\log \frac{1}{4} \\
b_{n}=n+1, n=0,1,2, \ldots \\
a_{n}=a_{0}-\sum_{m=0}^{n-1} c_{m} \\
c_{m}=\log \left(1-\frac{1}{2^{m+1}}\right), m=0,1,2, \ldots
\end{gathered}
$$

We will show that u fulfills all the conditions of the theorem of one radius except one, the one of continuity in closed $\bar{D}(0,1)$. In particular, we will show the following

1) u is continuous at $D(0,1)$
2) u is not continuous at $\bar{D}(0,1)$
3) $\forall z \in D(0,1)$ there is a radius $r(z)>0$ such that u satisfies the property of mean value in disk $D(z, r(z))$
4) finally, and while all of the above applies, we will show that u is not harmonic to $D(0,1)$.
Indeed,
5) $u_{0}(z)$, as defined is continuous at Δ_{0}. In the inner of $\Delta_{n}, u(z)=u_{n}(z)$ so u is continuous in the inner of each ring with the above properties. On the borders of the rings we have $u_{n}(z)=u_{n+1}(z)$. Actually if

$$
z \in \Delta_{n} \cap \Delta_{n+1}
$$

then

$$
|z|=1-\frac{1}{2^{n+1}}
$$

And

$$
\begin{aligned}
u_{n+1}(z) & =a_{n+1}+b_{n+1} \log \left(1-\frac{1}{2^{n+1}}\right)=a_{0}-\sum_{m=0}^{n} c_{m}+(n+2) \log \left(1-\frac{1}{2^{n+1}}\right) \\
& =a_{0}-\sum_{m=0}^{n-1} c_{m}-c_{n}+(n+1) \log \left(1-\frac{1}{2^{n+1}}\right)+\log \left(1-\frac{1}{2^{n+1}}\right) \\
=a_{0}- & \sum_{m=0}^{n-1} c_{m}-\log \left(1-\frac{1}{2^{n+1}}\right)+(n+1) \log \left(1-\frac{1}{2^{n+1}}\right)+\log \left(1-\frac{1}{2^{n+1}}\right) \\
= & a_{0}-\sum_{m=0}^{n-1} c_{m}+(n+1) \log \left(1-\frac{1}{2^{n+1}}\right)=a_{n}+b_{n} \log |z|=u_{n}(z)
\end{aligned}
$$

Suppose z_{0} belongs in one of the borders of Δ_{n} for example at the right edge of Δ_{n} with $\left|z_{0}\right|=1-\frac{1}{2^{n+1}}$. Then $z_{0} \in \Delta_{n} \cap \Delta_{n+1}$. Suppose $\epsilon>0$. u_{n} is continuous at z_{0}. So there exists $\delta_{1}>0$ such as $\forall z \in \Delta_{n}$ with $\left|z-z_{0}\right|<$ $\delta_{1} \Rightarrow\left|u_{n}(z)-u_{n}\left(z_{0}\right)\right|<\epsilon$. Likewise u_{n+1} is continuous at z_{0}. So there is $\delta_{2}>0$ such as $\forall z \in \Delta_{n+1}$ with $\left|z-z_{0}\right|<\delta_{2} \Rightarrow\left|u_{n+1}(z)-u_{n+1}\left(z_{0}\right)\right|<\epsilon$. We set $\delta=\min \left\{\delta_{1}, \delta_{2}\right\}$ and we have $\delta \leq \delta_{1}, \delta_{2}$. So there is $\delta>0$ such as $\forall z \in$ $\Delta_{n} \cup \Delta_{n+1}$ with $\left|z-z_{0}\right|<\delta \Rightarrow\left|u(z)-u\left(z_{0}\right)\right|<\epsilon$. Therefore u is continuous on the boundaries of the rings too and finally continuous at $D(0,1)$.
2) To show that u is not continuous at $\bar{D}(0,1)$, it is enough to show that there is no limit

$$
\lim _{|z| \rightarrow 1} u(z) .
$$

We suppose the sequence of points of $D(0,1)$

$$
z_{n}=1-\frac{1}{2^{n}}
$$

with

$$
\lim _{n \rightarrow+\infty} z_{n}=1
$$

We have

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} u\left(z_{n}\right)=\lim _{n \rightarrow+\infty} u_{n}\left(z_{n}\right)=\lim _{n \rightarrow+\infty}\left(a_{n}+b_{n} \log \left|z_{n}\right|\right) \\
=\lim _{n \rightarrow+\infty}\left[a_{0}-\sum_{m=0}^{n-1} c_{m}\right]+\lim _{n \rightarrow+\infty}\left[(n+1) \log \left(1-\frac{1}{2^{n+1}}\right)\right] \\
=a_{0}-\lim _{n \rightarrow+\infty} \sum_{m=0}^{n-1} c_{m}+\lim _{n \rightarrow+\infty} n \log \left(1-\frac{1}{2^{n+1}}\right)+\lim _{n \rightarrow+\infty} \log \left(1-\frac{1}{2^{n+1}}\right) \\
=a_{0}+\sum_{m=0}^{+\infty}\left[-c_{m}\right]+\lim _{n \rightarrow+\infty} \log \left[\left(1-\frac{1}{2^{n+1}}\right)^{n}\right] .
\end{gathered}
$$

Now we will show that

$$
\lim _{n \rightarrow+\infty} \log \left[\left(1-\frac{1}{2^{n+1}}\right)^{n}\right]=\frac{1}{e}
$$

and

$$
\sum_{m=0}^{+\infty}\left[-c_{m}\right]=+\infty
$$

For the fisrt we have

$$
\forall n \in \mathbb{N}, 2^{n} \geq n \Rightarrow\left(1-\frac{1}{2^{n}}\right)^{n} \geq\left(1-\frac{1}{n}\right)^{n}
$$

and therefore

$$
\lim _{n \rightarrow+\infty}\left(1-\frac{1}{2^{n}}\right)^{n} \geq \lim _{n \rightarrow+\infty}\left(1-\frac{1}{n}\right)^{n}=\frac{1}{e}
$$

Otherwise

$$
\forall n \in \mathbb{N}, 2^{n} \geq n \Rightarrow\left(1-\frac{1}{2^{n}}\right)^{2^{n}} \geq\left(1-\frac{1}{2^{n}}\right)^{n}
$$

So

$$
\frac{1}{e}=\lim _{n \rightarrow+\infty}\left(1-\frac{1}{2^{n}}\right)^{2^{n}} \geq \lim _{n \rightarrow+\infty}\left(1-\frac{1}{2^{n}}\right)^{n}
$$

eventually by the combination of the above

$$
\lim _{n \rightarrow+\infty}\left(1-\frac{1}{2^{n}}\right)^{n}=\frac{1}{e}
$$

which is the first demand. Now we set

$$
t_{n}=-c_{n}=-\log \left(1-\frac{1}{2^{n+1}}\right), s_{n}=\frac{1}{n+1}
$$

where

$$
\forall n \in \mathbb{N}, 1-\frac{1}{2^{n+1}} \leq 1 \Rightarrow t_{n}=-\log \left(1-\frac{1}{2^{n+1}}\right) \geq 0
$$

We have

$$
\begin{gathered}
\lim _{n \rightarrow+\infty}\left[\frac{t_{n}}{s_{n}}\right]=\lim _{n \rightarrow+\infty}\left[\frac{-\log \left(1-\frac{1}{2^{n+1}}\right)}{\frac{1}{n+1}}\right] \\
=\lim _{n \rightarrow+\infty}\left[\log \left(1-\frac{1}{2^{n+1}}\right)^{-(n+1)}\right] \\
=\log \left[\frac{1}{\lim _{n \rightarrow+\infty}\left(1-\frac{1}{2^{n+1}}\right)^{(n+1)}}\right]=\log e=1 .
\end{gathered}
$$

Thus according to Limit Comparison Test the series

$$
\sum_{n=0}^{+\infty} t_{n}, \sum_{n=0}^{+\infty} s_{n}
$$

have the same behavior. But

$$
\sum_{n=0}^{+\infty} s_{n}=\sum_{n=0}^{+\infty} \frac{1}{n+1}=+\infty
$$

finally

$$
\sum_{n=0}^{+\infty} t_{n}=+\infty
$$

which is the second demand.
Returning to the limit calculation, we have

$$
\lim _{n \rightarrow+\infty} u\left(z_{n}\right)=a_{0}+\infty+\frac{1}{e}=+\infty
$$

therefore the limit

$$
\lim _{|z| \rightarrow 1} u(z)
$$

does not exist. 3)In the inner of the rings, u is harmonic. Consequently the property of Mean value is satisfied. If z_{0} is a point on the boundary of a ring, suppose $z_{0} \in \Delta_{n} \cap \Delta_{n+1}$, then select a radius less than the width of the ring $\Delta_{n+1}, r<\frac{1}{2^{n+2}}$ (the width of the sequence of rings Δ_{n} decreases) the disk $D\left(z_{0}, r\right)$ is entirely in the inner of $\Delta_{n} \cup \Delta_{n+1}$. At $D(0,1)$ define the continuous function

$$
M(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z+r e^{i \theta}\right) d \theta
$$

Let $\left\{z_{k}\right\}$ be a sequence with elements of Δ_{n} with

$$
\lim _{k \rightarrow+\infty} z_{k}=z_{0}
$$

For all $k \in \mathbb{N}$ we have , $M\left(z_{k}\right) \leq M\left(z_{0}\right)$. Also u_{n} is harmonic in Δ_{n} therefore $\forall z_{k} \in \Delta_{n}, \exists r_{k}>0$ such that it is true
$u_{n}\left(z_{k}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u_{n}\left(z_{k}+r_{k} e^{i \theta}\right) d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u_{n}\left(z_{k}+r e^{i \theta}\right) d \theta=M\left(z_{k}\right) \leq M\left(z_{0}\right)$
Consequently

$$
u_{n}\left(z_{k}\right) \leq M\left(z_{0}\right), \forall k \in \mathbb{N} \Rightarrow \lim _{k \rightarrow+\infty} u_{n}\left(z_{k}\right) \leq M\left(z_{0}\right)
$$

and finally

$$
u_{n}\left(z_{0}\right) \leq M\left(z_{0}\right)
$$

Then select $\left\{z_{k}\right\}$ a sequence with elements of Δ_{n+1} with

$$
\lim _{k \rightarrow+\infty} z_{k}=z_{0}
$$

like we did above, considering that now it is true $\forall k \in \mathbb{N}, M\left(z_{k}\right) \geq M\left(z_{0}\right)$ we will get

$$
u_{n+1}\left(z_{0}\right) \geq M\left(z_{0}\right)
$$

eventually

$$
M\left(z_{0}\right) \leq u_{n+1}\left(z_{0}\right)=u_{n}\left(z_{0}\right) \leq M\left(z_{0}\right)
$$

namely

$$
u_{n}\left(z_{0}\right)=M\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Therefore, the property of Mean Value is satisfied on the boundaries of the rings and as a result throughout $D(0,1)$.
4) The last thing we have to prove is that u is not harmonic in $D(0,1)$ and we will do that by showing that

$$
\frac{\partial^{2} u}{\partial x^{2}}, \frac{\partial^{2} u}{\partial y^{2}}
$$

don'At exist for the points on the border of the rings. Let $z=x+i y \in \Delta_{n}$. Then

$$
\begin{gathered}
u(z)=u_{n}(z)=a_{n}+b_{n} \log \sqrt{x^{2}+y^{2}} \\
\frac{\partial u(z)}{\partial x}=\frac{x}{x^{2}+y^{2}} b_{n}
\end{gathered}
$$

Consider the border of $\Delta_{k},|z|=1-\frac{1}{2^{k}}=r_{k}$. We suppose the sequences of points of $D(0,1)$

$$
z_{n}=r_{k}-\frac{1}{2^{n}}, w_{n}=r_{k}+\frac{1}{2^{n}}
$$

z_{n} approaches this boundary of Δ_{k} through the ring Δ_{n}, while w_{n} through the ring Δ_{n+1}. So we have

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \frac{\partial u\left(z_{n}\right)}{\partial x}=\frac{r_{k}}{r_{k}^{2}} b_{k}=\frac{b_{k}}{r_{k}}=\frac{k+1}{r_{k}} \\
\lim _{n \rightarrow+\infty} \frac{\partial u\left(w_{n}\right)}{\partial x}=\frac{r_{k}}{r_{k}^{2}} b_{k+1}=\frac{b_{k+1}}{r_{k}}=\frac{k+2}{r_{k}}
\end{gathered}
$$

namely, along two different paths z_{n}, w_{n} with $\left|z_{n}\right| \longrightarrow r_{k},\left|w_{n}\right| \longrightarrow r_{k}$ we have

$$
\lim _{n \rightarrow+\infty} \frac{\partial u\left(z_{n}\right)}{\partial x} \neq \lim _{n \rightarrow+\infty} \frac{\partial u\left(w_{n}\right)}{\partial x}
$$

Therefore the limit

$$
\lim _{|z| \rightarrow r_{k}} \frac{\partial u(z)}{\partial x}
$$

does not exist, which is sufficient to complete the proof.

Conclusions

The Mean Value property in bounded places, such as a disk, characterizes harmonic functions with basic precondition, to ensure the continuity in the closeness of this place.

Bibliography

[1] Mark A. Pinsky , Mean Values and the Maximum Principle: A Proof in Search of More Theorems. The Mathematical Association of America 2005.
[2] R.B. Burckel, Three Secrets About Harmonic Functions. Department of Mathematics Kansas State University Manhattan,KS 665061977.
[3] Sheldon Axler, Armonic Functions from a Complex Analysis Viewpoint .Department of Mathematics, Michigan State University, East Lansing, MI 488241986.
[4] H. P. Boas and R. P. Boas, Short Proofs of Three Theorems on Harmonic Functions. The Mathematical Association of America, Volume 102, Number 4, 1988.
[5] R. B. Burckel, A Strong Converse to Gauss's Mean-Value Theorem. Department of Mathematics Kansas State University Manhattan,KS 66506 1980.
[6] Joseph Bak Donald J. Newman, Complex Analysis. Edit. Leader Books 2000.
[7] S. Axler, F.W. Gehring and K.A. Ribet, Graduate Texts in Mathematics. Edit. Springer 2001.
[8] S. Donald Sarason, Complex Function Theory. Edit. American Mathematical Society 2007.
[9] S. Donald Sarason, Notes on Complex Function Theory. Edit. Hindustan Book Agency 1994.
[10] E.C. Titchmarsh, M.A., F.R.S., Notes on Complex Function Theory. Edit. Oxford University Press 1979.
[11] Zeev Nehari, Conformal Mapping. Edit. McGraw-Hill Book Company, Inc. 1952.
[12] Einar Hille, Analytic Function Theory. Edit. Chelsea Publishing Company. 1973.

[^0]: ${ }^{1}$ Assistant Professor, Dept. of Spatial Planning and Development, School of Engineering, Aristotle Univ. of Thessaloniki, 54124 Thessaloniki, Greece (corresponding author). E-mail: dimitraalexiou@plandevel.auth.gr
 ${ }^{2}$ MSc in Theoretical Mathematics, Department of Mathematics, Aristotle Univ. of Thessaloniki, 54124 Thessaloniki, Greece. E-mail : athanailidou_eva@yahoo.gr

