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Import
The present paper deals with the study of harmonic and analytical functions. 
It deals with well-known and powerful theorems of the Complex Analysis and 
has as its central theme the One-Radius Theorem, somehow reversing the Mean 
Value theorem of harmonic functions. These considerations are set out in Mark 
A. Pinsky’s article [ Mean Values and the Maximum Principle: A Proof in 
Search of More Theorems ].

Purpose
Our goal is to prove that in the One-Radius Theorem, the precondition of con- 
tinuity of u in closed D(R) and not simply in D(R), is necessary.

Methodology
For this reason, we will give an example in which we construct a function u
continuous to D(R), which satisfies the other conditions of the theorem and yet 
it is not harmonic to D(R).

  Before proceeding with the presentation, we should recall basic concepts of 
Complex Analysis. We will formulate definitions and theorems that are simply 
referred or used in this paper.

Definition 0.0.1 A set S ⊂ C is coherent if there are no subsets of C, A, B =6
∅, open to S with the following properties: S = A ∪ B and A ∩ B = ∅. So, we 
call S a coherent set of C if this can not be written as a union of two foreign,
non-empty and open to the S sets. Otherwise, S is called non-coherent. An 
open and coherent set is called a place.

Definition 0.0.2 A real function u(x, y) that is twice productive and satisfies 
the Laplace equation

uxx + uyy = 0

in a place D is called harmonic in D.

Definition 0.0.3 We say that a function u = u(x, y) from place Ω to R has 
the property of Mean Value in Ω, if it is true

u(a, b) =
1

2π

∫ 2π

0

u(a+R cos θ, a+R sin θ)dθ,∀D(a, b;R) ⊂ Ω.

That is, the value of u in the center of the disk is equal to the average of its
values on the periphery of the disk.
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Theorem 0.0.4 (Mean Value for Harmonic Functions) If u is a harmonic
function on disk D(a, b;R) ⊂ Ω and continuous in Ω , then it has the property
of mean value in D.

.

One-Radius Theorems

We know that the Mean Value attribute characterizes the harmonic func-
tions. In particular, if u u is a continuous function from the place Ω to R and
satisfies the property of Mean Value in Ω , then it is harmonic and C∞ in it.
Then follows the One-Radius Theorem, a form of inversion of the Mean Value
Theorem.

Theorem 0.0.5 (Theorem of One Radius) Suppose u = u(x, y) ) is a
continuous function in the disk D(R). If ∀(x, y) ∈ D, ∃ r = r(x, y) with

0 < r ≤ R−
√
x2 + y2 and such that it is valid

u(x, y) =
1

2π

∫ 2π

0

u(x+ r cos θ, y + r sin θ)dθ,

then u is harmonic and C2 in D(R).

Then we will show that in the theorem of one radius, the condition of conti-
nuity of u in the closed D(R) and not just in D(R), is necessary. Indeed, below,
we will give an example in which a continuous function u in D(R) satisfies the
other conditions of the theorem and is nonetheless harmonic in D(R) .

Example 0.0.6 Suppose the function u(z) = log |z|. u is continuous and har-
monic at C∗. Therefore, if

∆ = {z ∈ C : r1 ≤ |z| ≤ r2}

is a ring, we can find a harmonic function in ∆ that takes any fixed values in
the inner and outer circle, putting u(z) = b log |z| + a for appropriate a, b. So
we suppose the rings

∆n = {z ∈ C : 1− 1

2n
≤ |z| ≤ 1− 1

2n+1
}, n = 0, 1, 2, ...

and define the function

u(z) = un(z),∀z ∈ ∆n

with

un(z) = an + bn log |z| , n = 1, 2, ...
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and

u0(z) =

{
0, 0 ≤ |z| ≤ 1

4

a0 + b0 log |z| , 14 ≤ |z| ≤
1
2

Where

a0 = − log
1

4

bn = n+ 1, n = 0, 1, 2, ...

an = a0 −
n−1∑
m=0

cm

cm = log (1− 1

2m+1
),m = 0, 1, 2, ...

We will show that u fulfills all the conditions of the theorem of one radius except
one, the one of continuity in closed D(0, 1). In particular, we will show the
following
1) u is continuous at D(0, 1)
2) u is not continuous at D(0, 1)
3) ∀z ∈ D(0, 1) there is a radius r(z) > 0 such that u satisfies the property of
mean value in disk D(z, r(z))
4) finally, and while all of the above applies, we will show that u is not harmonic
to D(0, 1).
Indeed,
1) u0(z), as defined is continuous at ∆0. In the inner of ∆n, u(z) = un(z) so u
is continuous in the inner of each ring with the above properties. On the borders
of the rings we have un(z) = un+1(z). Actually if

z ∈ ∆n ∩∆n+1

then

|z| = 1− 1

2n+1

And

un+1(z) = an+1 + bn+1 log (1− 1

2n+1
) = a0 −

n∑
m=0

cm + (n+ 2) log (1− 1

2n+1
)

= a0 −
n−1∑
m=0

cm − cn + (n+ 1) log (1− 1

2n+1
) + log (1− 1

2n+1
)

= a0 −
n−1∑
m=0

cm − log (1− 1

2n+1
) + (n+ 1) log (1− 1

2n+1
) + log (1− 1

2n+1
)

= a0 −
n−1∑
m=0

cm + (n+ 1) log (1− 1

2n+1
) = an + bn log |z| = un(z).
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Suppose z0 belongs in one of the borders of ∆n for example at the right edge
of ∆n with |z0| = 1 − 1

2n+1 . Then z0 ∈ ∆n ∩ ∆n+1. Suppose ε > 0. un is
continuous at z0. So there exists δ1 > 0 such as ∀z ∈ ∆n with |z − z0| <
δ1 ⇒ |un(z)− un(z0)| < ε. Likewise un+1 is continuous at z0. So there is
δ2 > 0 such as ∀z ∈ ∆n+1 with |z − z0| < δ2 ⇒ |un+1(z)− un+1(z0)| < ε. We
set δ = min {δ1, δ2} and we have δ ≤ δ1, δ2. So there is δ > 0 such as ∀z ∈
∆n ∪ ∆n+1 with |z − z0| < δ ⇒ |u(z)− u(z0)| < ε. Therefore u is continuous
on the boundaries of the rings too and finally continuous at D(0, 1).
2)To show that u is not continuous at D(0, 1), it is enough to show that there
is no limit

lim
|z|→1

u(z).

We suppose the sequence of points of D(0, 1)

zn = 1− 1

2n

with
lim

n→+∞
zn = 1.

We have

lim
n→+∞

u(zn) = lim
n→+∞

un(zn) = lim
n→+∞

(an + bn log |zn|)

= lim
n→+∞

[a0 −
n−1∑
m=0

cm] + lim
n→+∞

[(n+ 1) log (1− 1

2n+1
)]

= a0 − lim
n→+∞

n−1∑
m=0

cm + lim
n→+∞

n log (1− 1

2n+1
) + lim

n→+∞
log (1− 1

2n+1
)

= a0 +

+∞∑
m=0

[−cm] + lim
n→+∞

log[(1− 1

2n+1
)n].

Now we will show that

lim
n→+∞

log[(1− 1

2n+1
)n] =

1

e

and
+∞∑
m=0

[−cm] = +∞.

For the fisrt we have

∀n ∈ N, 2n ≥ n⇒ (1− 1

2n
)n ≥ (1− 1

n
)n

and therefore

lim
n→+∞

(1− 1

2n
)n ≥ lim

n→+∞
(1− 1

n
)n =

1

e
.
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Otherwise

∀n ∈ N, 2n ≥ n⇒ (1− 1

2n
)2

n

≥ (1− 1

2n
)n

So
1

e
= lim
n→+∞

(1− 1

2n
)2

n

≥ lim
n→+∞

(1− 1

2n
)n

eventually by the combination of the above

lim
n→+∞

(1− 1

2n
)n =

1

e

which is the first demand. Now we set

tn = −cn = − log (1− 1

2n+1
), sn =

1

n+ 1

where

∀n ∈ N, 1− 1

2n+1
≤ 1⇒ tn = − log (1− 1

2n+1
) ≥ 0.

We have

lim
n→+∞

[
tn
sn

] = lim
n→+∞

[
− log (1− 1

2n+1 )
1

n+1

]

= lim
n→+∞

[log (1− 1

2n+1
)
−(n+1)

]

= log [
1

limn→+∞(1− 1
2n+1 )(n+1)

] = log e = 1.

Thus according to Limit Comparison Test the series

+∞∑
n=0

tn,

+∞∑
n=0

sn

have the same behavior. But

+∞∑
n=0

sn =

+∞∑
n=0

1

n+ 1
= +∞

finally
+∞∑
n=0

tn = +∞

which is the second demand.
Returning to the limit calculation, we have

lim
n→+∞

u(zn) = a0 +∞+
1

e
= +∞
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therefore the limit
lim
|z|→1

u(z).

does not exist. 3)In the inner of the rings, u is harmonic. Consequently the
property of Mean value is satisfied. If z0 is a point on the boundary of a ring,
suppose z0 ∈ ∆n ∩ ∆n+1, then select a radius less than the width of the ring
∆n+1, r <

1
2n+2 (the width of the sequence of rings ∆n decreases) the disk D(z0, r)

is entirely in the inner of ∆n∪∆n+1. At D(0, 1) define the continuous function

M(z) =
1

2π

∫ 2π

0

u(z + reiθ)dθ.

Let {zk} be a sequence with elements of ∆nwith

lim
k→+∞

zk = z0.

For all k ∈ N we have ,M(zk) ≤ M(z0). Also un is harmonic in ∆n therefore
∀zk ∈ ∆n,∃rk > 0 such that it is true

un(zk) =
1

2π

∫ 2π

0

un(zk+rke
iθ)dθ ≤ 1

2π

∫ 2π

0

un(zk+reiθ)dθ = M(zk) ≤M(z0)

Consequently

un(zk) ≤M(z0),∀k ∈ N⇒ lim
k→+∞

un(zk) ≤M(z0)

and finally
un(z0) ≤M(z0).

Then select {zk} a sequence with elements of ∆n+1 with

lim
k→+∞

zk = z0

like we did above, considering that now it is true ∀k ∈ N,M(zk) ≥ M(z0) we
will get

un+1(z0) ≥M(z0)

eventually
M(z0) ≤ un+1(z0) = un(z0) ≤M(z0)

namely

un(z0) = M(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

Therefore, the property of Mean Value is satisfied on the boundaries of the rings
and as a result throughout D(0, 1).
4) The last thing we have to prove is that u is not harmonic in D(0, 1) and we
will do that by showing that

∂2u

∂x2
,
∂2u

∂y2
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don’At exist for the points on the border of the rings. Let z = x + iy ∈ ∆n.
Then

u(z) = un(z) = an + bn log
√
x2 + y2

∂u(z)

∂x
=

x

x2 + y2
bn

Consider the border of ∆k, |z| = 1 − 1
2k

= rk. We suppose the sequences of
points of D(0, 1)

zn = rk −
1

2n
, wn = rk +

1

2n
.

zn approaches this boundary of ∆k through the ring ∆n, while wn through the
ring ∆n+1. So we have

lim
n→+∞

∂u(zn)

∂x
=
rk
r2k
bk =

bk
rk

=
k + 1

rk

lim
n→+∞

∂u(wn)

∂x
=
rk
r2k
bk+1 =

bk+1

rk
=
k + 2

rk

namely, along two different paths zn, wn with |zn| −→ rk, |wn| −→ rk we have

lim
n→+∞

∂u(zn)

∂x
6= lim
n→+∞

∂u(wn)

∂x

Therefore the limit

lim
|z|→rk

∂u(z)

∂x

does not exist, which is sufficient to complete the proof.

Conclusions
The Mean Value property in bounded places , such as a disk , characterizes
harmonic functions with basic precondition , to ensure the continuity in the
closeness of this place.
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