

n-fold implicative pseudo valuations on hoops

Yongwei Yang*,a,b

^a School of Mathematics and Statistics, Anyang Normal University, Anyang 455000, China
^b School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

Abstract

Hoops play an important role in the study of fuzzy logic based on t-norms. In this paper, we introduce some notions of n-fold implicative pseudo valuations on hoops, and also analysis some properties of them. The shrinkage property for n-fold implicative pseudo valuations is provided, and the preimage and image of n-fold implicative pseudo valuation are discussed.

Keywords: Hoop; Pseudo valuation; *n*-fold implicative pseudo valuation

1. Introduction

A continuous t-norm is a continuous map * from $[0,1]^2$ into [0,1] such that ([0,1],*,1) is a commutative totally ordered monoid. Since the natural ordering on [0,1] is a complete lattice ordering, each t-norm induces naturally a residuation, or an implication in more logical. One of the relevant algebraic aspects of a continuous t-norm on [0,1] is the fact that the associated monoid is residuated. Hoops as ordered commutative residuated integral monoids satisfying a further conditions, were introduced by Bosbach [1]. Hoops have long been considered of interest by algebraists, starting from the classical example of the lattice-ordered monoid. Kondo [2] considered that fundamental properties of filters in hoops, and then pointed out that any positive filter of a hoop is implicative and fantastic. To extend the research to filter theory of hoops, [4] introduced the notions of n-fold (positive) implicative filters, [3] gave the notions of some types of filters ((positive) implicative filters, fantastic filters, associative filters) in pseudo hoop-algebras and investigated their properties.

Yang and Xin applied the notion of pseudo-valuations of [5] to EQ-algebras, and studied some characterizations of pseudo pre-valuations on EQ-algebras [6]. They also introduced the notion of pseudo MV-valuations by a function from a BL-algebra to an MV-algebra, which provides a new idea for the study of BL-algebras from MV-algebras [7]. Following the research work of [8], Wang et al. [9] introduced the notion of implicative pseudo valuations on hoops, and showed that a pseudo valuation on regular hoops is implicative if and only if it satisfies $\varphi(x \sqcup x') = 0$.

Considering that the notions of pseudo-valuations [6, 9] and n-fold implicative filters [4], we present the notion of n-fold implicative pseudo valuations on hoops. Some properties of n-fold implicative pseudo valuations are given and the shrinkage property for n-fold implicative pseudo valuations is valid. The preimage and image of n-fold implicative pseudo valuation are also discussed.

2. Preliminaries

By a hoop-algebra or briefly hoop, we shall mean an algebra $(H, \otimes, \to, 1)$ of type (2, 2, 0) satisfying the following axioms: for any $x, y, z \in H$,

(HP1) $(H, \otimes, 1)$ is a commutative monoid; (HP2) $x \to x = 1$;

(HP3) $x \otimes (x \rightarrow y) = y \otimes (y \rightarrow x);$

ISSN: 2455-9210

^{*}Corresponding author. yangyw@aynu.edu.cn (Y. W. Yang).

(HP4)
$$x \to (y \to z) = (x \otimes y) \to z$$
.

On every hoop $(H, \otimes, \to, 1)$, there is a natural order " \leq " called the hoop-ordering defined by $x \leq y$ if and only if $x \to y = 1$ for any $x, y \in H$. Under this order, it can be proved that (H, \leq) is a meet semilattice with $x \wedge y = x \otimes (x \to y)$ and 1 as the maximal element. In this work, unless mentioned otherwise, $(H, \otimes, \to, 1)$ will be a hoop, which will often be referred by its support set H.

Proposition 2.1. [10, 11] *Let* $(H, \otimes, \rightarrow, 1)$ *be a hoop. Then the following assertions are valid: for any* $x, y, z \in H$,

- (1) $x \otimes y \leq z$ if and only if $x \leq y \rightarrow z$;
- (2) $x \otimes (x \rightarrow y) \leq y$, $x \otimes y \leq x \wedge y \leq x \rightarrow y$, $x \leq y \rightarrow x$;
- (3) $x \to y \le (y \to z) \to (x \to z), y \to x \le (z \to y) \to (z \to x);$
- $(4) (x \to y) \to (x \to z) \le x \to (y \to z);$
- (5) $x \to (y \to z) = (x \otimes y) \to z = y \to (x \to z);$
- (6) if $x \le y$, then $y \to z \le x \to z$, $z \to x \le z \to y$ and $x \otimes z \le y \otimes z$.

Let $(H, \otimes, \to, 1)$ be a hoop and F a nonempty subset of H. F is called a filter if it satisfies: for any $x, y \in H$, (1) $x, y \in F$ implies $x \otimes y \in F$; (2) $x \in F$ and $x \leq y$ imply $y \in F$. It is shown that a nonempty subset F of a hoop H is a filter if and only if for any $x, y \in H$, (1) $1 \in F$; (2) $x \in F$ and $x \to y \in F$ imply $y \in F$. Moreover, a non-empty set F of H is called an implicative filter of H if it satisfies that $x \to (y \to z) \in F$ and $x \to y \in F$ imply $x \to z \in F$, for any $x, y, z \in H$ [12].

We denote
$$x^n = \underbrace{x \otimes \cdots \otimes x}_{n \text{ times}}$$
 if $n > 0$ and $x^0 = 1$ for any $x \in H$.

Definition 2.2. [4] Let F be a subset of H and $n \in N$. F is called a n-fold implicative filter of H if it satisfies:

- (1) $1 \in F$,
- (2) $x^n \to (y \to z) \in F$ and $x^n \to y \in F$ imply $x^n \to z \in F$, for any $x, y, z \in H$.

Definition 2.3. [6] Let $\varphi: H \to R$ be a real-valued function, where R is the set of all real numbers. Then φ is called a pseudo valuation on A with respective a filter if it satisfies the following conditions: for any $x, y \in H$,

- (1) $\varphi(1) = 0$,
- (2) $\varphi(y) \le \varphi(x) + \varphi(x \to y)$.

A pseudo valuation φ is called a valuation if $\varphi(x) = 0$ implies x = 1.

Proposition 2.4. [6] Let φ be a pseudo valuation on H. Then the following inequalities are valid: for any $x, y, z \in H$,

- (1) $x \le y$ implies $\varphi(y) \le \varphi(x)$,
- (2) $0 \le \varphi(x)$,
- (3) $\varphi(x \to z) \le \varphi(x \to y) + \varphi(y \to z)$,
- (4) $\varphi(x \to (y \to z)) \le \varphi((x \to y) \to z)$.

Definition 2.5. [9] A real-valued function φ on H is called an implicative pseudo valuation if it satisfies:

- (1) $\varphi(1) = 0$
- (2) $\varphi(x \to z) \le \varphi(x \to (y \to z)) + \varphi(x \to y)$, for any $x, y \in H$.

Proposition 2.6. [9] Every implicative pseudo valuation on H is a pseudo valuation on H.

Definition 2.7. Let H_1 , H_2 be Hoops. A function $f: H_1 \to H_2$ is called a hoop-homomorphism if

- (1) f(1) = 1,
- (2) $f(a \otimes b) = f(a) \otimes f(b)$,
- (3) $f(a \rightarrow b) = f(a) \rightarrow f(b)$,

for any $a, b \in H_1$.

3. *n*-fold implicative pseudo valuations

In the section, the notion of pseudo valuations on hoop-algebras is given, and some characterizations of pseudo valuations are shown.

Definition 3.1. Let φ be a real-valued function on H and $n \in \mathbb{N}$. Then φ is called a n-fold implicative pseudo valuation on H if it satisfies:

- (1) $\varphi(1) = 0$,
- (2) $\varphi(x^n \to z) \le \varphi(x^n \to (y \to z)) + \varphi(x^n \to y)$, for any $x, y \in H$.

Remark 3.2. (1) Notice that 1-fold implicative pseudo valuation on a hoop is an implicative pseudo valuation.

- (2) The notion of n-fold implicative pseudo valuations on a hoop generalizes the notion of implicative pseudo valuations.
- (3) Every n-fold implicative pseudo valuations on a hoop is a pseudo valuation.

The following example shows that n-fold implicative pseudo valuations are exist.

Example 3.3. Let $H = \{0, a, b, c, 1\}$ be a set with the Hasse diagram and Cayley tables as follows.

Then $(H, \otimes, \to, 1)$ is a hoop. Define a real-valued function $\varphi: H \to R$ by $\varphi(0) = 5$, $\varphi(a) = 2$, $\varphi(b) = 3$ and $\varphi(1) = 0$. Then φ is a n-fold implicative pseudo valuation on H, while it is not a 2-fold implicative pseudo valuation, since $\varphi(b^2 \to 0) = 3 \nleq \varphi(b^2 \to (b^2 \to 0)) + \varphi(b^2 \to b^2) = 0$.

Proposition 3.4. Let φ be a real-valued function of H. If φ is a n-fold implicative pseudo valuation on H, then the set $H_{\varphi} := \{x \in H | \varphi(x) = 0\}$ is a n-fold implicative filter of H.

PROOF. Obviously, $1 \in H_{\varphi}$. For any $x^n \to (y \to z) \in H_{\varphi}$ and $x^n \to y \in H_{\varphi}$, then we have $\varphi(x^n \to (y \to z)) = 0$ and $\varphi(x^n \to y) = 0$. Notice that φ is a *n*-fold implicative pseudo valuation, we obtain that $\varphi(x^n \to z) \le \varphi(x^n \to (y \to z)) + \varphi(x^n \to y) = 0$, and $\varphi(x^n \to z) \ge 0$. Hence $\varphi(x^n \to z) = 0$, it follows that $x^n \to z \in H_{\varphi}$, and so H_{φ} is a *n*-fold implicative filter of H.

Theorem 3.5. Let φ be a pseudo valuation on H. Then the following conditions are equivalent: for any $x, y, z \in H$,

- (1) φ is a n-fold implicative pseudo valuation on H,
- (2) $\varphi(x^n \to y) \le \varphi(x^{n+1} \to y)$,
- $(3) \varphi(x^n \to x^{2n}) = 0,$
- (4) $\varphi((x^n \to y) \to (x^n \to z)) \le \varphi(x^n \to (y \to z)).$

PROOF. (1) \Rightarrow (2) For any $x, y \in H$, we get that $x^n \to x = 1$, and $\varphi(x^n \to y) \le \varphi(x^n \to (x \to y)) + \varphi(x^n \to x) = \varphi(x^{n+1} \to y) + \varphi(1) = \varphi(x^{n+1} \to y)$, hence (2) holds.

 $(2) \Rightarrow (3)$ The proof is by induction on n. Suppose that (2) holds.

Firstly, for n = 1, $\varphi(x \to x^2) \le \varphi(x^{1+1} \to x^2) = 0$, we have $\varphi(x \to x^2) = 0$.

Secondly, for n=2, then $\varphi(x^3 \to x^4) = \varphi(x^2 \to (x \to x^4)) \le \varphi(x^3 \to (x^x \to x^4)) = \varphi(1) = 0$, hence $\varphi(x^3 \to x^4) = 0$. From $\varphi(x^2 \to x^4) \le \varphi(x^3 \to x^4) = 0$, we get $\varphi(x^2 \to x^4) = 0$.

 $\varphi(x^3 \to x^4) = 0$. From $\varphi(x^2 \to x^4) \le \varphi(x^3 \to x^4) = 0$, we get $\varphi(x^2 \to x^4) = 0$. Finally, for n > 2, from $x^{n+1} \to (x^{n-1} \to x^{2n}) = 1$, we obtain that $\varphi(x^n \to (x^{n-1} \to x^{2n})) \le \varphi(x^{n+1} \to (x^{n-1} \to x^{2n})) = 0$, and so $\varphi(x^n \to (x^{n-1} \to x^{2n})) = 0$, that is $\varphi(x^{n-1} \to (x^n \to x^{2n})) = 0$. By using the hypothesis n times, then we get $\varphi(x^{n-n} \to (x^n \to x^{2n})) = 0$, and so $\varphi(x^n \to x^{2n}) = 0$.

$$(3) \Rightarrow (4) \text{ For any } x, y, z \in H, \text{ we have } x^n \to (y \to z) \le x^n \to ((x^n \to y) \to (x^n \to z)) = x^n \to (x^n \to z)$$

$$((x^n \to y) \to z)) = x^{2n} \to ((x^n \to y) \to z) \le (x^n \to x^{2n}) \to (x^n \to ((x^n \to y) \to z)) = (x^n \to x^{2n}) \to (x^n \to y)$$

 $(x^n \to ((x^n \to y) \to z))$. Since φ is a pseudo valuation on H and $\varphi(x^n \to x^{2n}) = 0$, it follows that $\varphi((x^n \to y) \to (x^n \to z)) \leq \varphi(x^n \to x^{2n}) + \varphi((x^n \to x^{2n}) \to (x^n \to ((x^n \to y) \to z))) = \varphi((x^n \to x^{2n}) \to (x^n \to ((x^n \to y) \to z))) = \varphi((x^n \to x^{2n}) \to (x^n \to ((x^n \to y) \to z))) \leq \varphi(x^n \to (y \to z))$, which means that $\varphi((x^n \to y) \to (x^n \to z)) \leq \varphi(x^n \to (y \to z))$. $(4) \Rightarrow (1)$ Since φ is a pseudo valuation on H, we get that $\varphi(x^n \to z) \leq \varphi(x^n \to y) + \varphi((x^n \to y) \to (x^n \to z)) \leq \varphi(x^n \to y) + \varphi(x^n \to (y \to z))$, therefore φ is a n-fold implicative pseudo valuation on H.

Proposition 3.6. If φ is a n-fold implicative pseudo valuation on H, then $\varphi(x^n \to y) = \varphi(x^{n+1} \to y)$ for any $x, y \in H$.

PROOF. According to Theorem 3.5, we get $\varphi(x^n \to y) \le \varphi(x^{n+1} \to y)$. As for the reverse inequality, from $x^n \to y \le x^{n+1} \to y$, we have $\varphi(x^{n+1} \to y) \le \varphi(x^n \to y)$ by Proposition 2.4. Thus $\varphi(x^n \to y) = \varphi(x^{n+1} \to y)$.

From Theorem 3.5, if φ is a *n*-fold implicative pseudo valuation on H, then $\varphi((x^n \to y) \to (x^n \to z)) \le \varphi(x^n \to (y \to z))$. And notice that $(x^n \to y) \to (x^n \to z) \le x^n \to (y \to z)$ by Proposition 2.1 (6), we have $\varphi(x^n \to (y \to z)) \le \varphi((x^n \to y) \to (x^n \to z))$, so we get the following result.

Proposition 3.7. If φ is a n-fold implicative pseudo valuation on H, then $\varphi((x^n \to y) \to (x^n \to z)) = \varphi(x^n \to (y \to z))$ for any $x, y, z \in H$.

Lemma 3.8. Every n-fold implicative pseudo valuation φ on H is a (n + 1)-fold implicative pseudo valuation.

PROOF. If φ is a *n*-fold implicative pseudo valuation on H, then $\varphi(x^{n+1} \to y) = \varphi(x^n \to (x \Rightarrow y)) \le \varphi(x^{n+1} \to (x \to y)) = \varphi(x^{n+2} \to y)$, that is, $\varphi(x^{n+1} \to y) \le \varphi(x^{n+2} \to y)$, hence φ is a (n+1)-fold implicative pseudo valuation by Theorem 3.5.

Using Lemma 3.8 and a simple induction argument, we obtain the following proposition.

Proposition 3.9. Let φ be a real-valued function of H and $k \in N - \{0\}$. If φ is a n-fold implicative pseudo valuation on H, then φ is (n + k)-fold implicative pseudo valuation.

In the follows, we will show that the shrinkage property for n-fold implicative pseudo valuations on a hoop is valid.

Proposition 3.10. Let φ be a real-valued function on H and ψ be a pseudo valuation on H with $\psi \leq \varphi$, that is, $\psi(x) \leq \varphi(x)$ for any $x \in H$. If φ is a n-fold implicative pseudo valuation on H, then ψ is also a n-fold implicative pseudo valuation on H.

PROOF. Since φ is a *n*-fold implicative pseudo valuation on H, then $\psi(x^n \to x^{2n}) \le \varphi(x^n \to x^{2n}) = 0$ for any $x \in H$. Consider that ψ is a pseudo valuation on H, we get that $\psi(x^n \to x^{2n}) \ge 0$ by Proposition 2.4, and therefore $\psi(x^n \to x^{2n}) = 0$, hence ψ is a *n*-fold implicative pseudo valuation on H.

Definition 3.11. Let f be a mapping from an hoop H_1 into a hoop H_2 , and φ, ψ be real-valued function on H_1 and H_2 , respectively. Then

- (1) the preimage $f^{-1}(\psi)$ of H_2 under f is defined as $f^{-1}(\psi)(x) = \psi(f(x))$, for any $x \in H_1$;
- (2) the image $f(\varphi)$ of φ under f is defined as

$$f(\varphi)(y) = \begin{cases} \inf\{\varphi(x)|f(x) = y\}, & f^{-1}(y) \neq \emptyset, \\ 0, & otherwise. \end{cases}$$

Theorem 3.12. Let φ , ψ be n-fold implicative pseudo valuations on H_1 and H_2 , respectively.

- (1) If $f: H_1 \to H_2$ be a hoop-homomorphism, then the preimage $f^{-1}(\psi)$ is a n-fold implicative pseudo valuation on H_1 .
- (2) If f is a hoop-epimorphism, then the image $f(\varphi)$ is a n-fold implicative pseudo valuation on H_2 .

Proof. It is easy to prove that $f^{-1}(\psi)$ and $f(\varphi)$ are pseudo valuations on H_1 and H_2 , respectively.

- (1) $f^{-1}(\psi)(x^n \to x^{2n}) = \psi(f(x^n \to x^{2n})) = \psi(f(x)^n \to f(x)^{2n}) = 0$, hence $f^{-1}(\psi)$ is a *n*-fold implicative pseudo valuation on H_1 .
- (2) Since φ is a *n*-fold implicative pseudo valuations on H_1 and f is a hoop-epimorphism, For any $y \in H_2$, then there exists $x \in H_1$ such that f(x) = y. It follows that $f(\varphi)(y^n \to y^{2n}) = \inf\{\varphi(z)|f(z) = y^n \to y^{2n}, z \in H_1\} = \inf\{\varphi(z)|f(z) = f(x)^n \to f(x)^{2n}, z \in H_1\} = \inf\{\varphi(z)|f(z) = f(x^n \to x^{2n}), z \in H_1\} = 0$, and hence $f(\varphi)$ is a *n*-fold implicative pseudo valuation on H_2 .

Acknowledgements

The works described in this paper are partially supported by the Higher Education Key Scientific Research Program Funded by Henan Province (No. 18A110008, 18A630001, 18A110010).

References

- [1] Bosbach B. Komplementare Halbgruppen. Axiomatik und Arithmetik, Fundamenta Mathematicae. 1969, 64: 257–287.
- [2] Kondo M. Some types of filters in hoops. International Symposium on Multiple-Valued Logic. 2011, 47: 50-53.
- [3] Alavi S Z, Borzooei R A, Kologani M A. Filter theory of pseudo hoop-algebras. Italian Journal of Pure & Applied Mathematics, 2017(37):619-632.
- [4] Luo C, Xin X, He P. *n*-fold (positive) implicative filters of hoops. Italian Journal of Pure & Applied Mathematics. 2017, 38: 631–642.
- [5] Busneag D. Hilbert algebras with valuations. Discrete Mathematics. 2003, 263: 11–24.
- [6] Yang Y, Xin X. EQ-algebras with pseudo pre-valuations. Italian Journal of Pure & Applied Mathematics. 2017, 36: 29-48.
- [7] Yang Y, Wang Y, Wang Q. BL-algebras with pseudo MV-valuations. International Journal of Mathematics and Statistics, 2018, 4 (3): 1-8.
- [8] Yang Y, Lu L, Wang Q. Pseudo valuation on hoop-algebra respect to filters. International Journal of Mathematics and Statistics, 2017, 2 (11): 12-19.
- [9] Wang M, Xin X L, Wang J T. Implicative Pseudo Valuations on Hoops. Chinese Quarterly Journal of Mathematics, 2018, 33 (1): 51–60.
- [10] Khorami R T, Saeid A B. Some unitary operators on hoop-algebras. Fuzzy Information and Engineering. 2017, 9(2): 205–223.
- [11] Borzooei R A, Varasteh H R, Borna K. Fundamental hoop-algebras. Ratio Mathematica, 2015, 29: 25-40.
- [12] Georgescu G, Leustean L, Preoteasa V. Pseudo-hoops. Jornal of Multiple Valued logic and Soft Computing. 2005, 11: 153–184.