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Abstract 

In this paper we discuss the relationships between the numerical range and the essential 

numerical range. We prove two theorems in this paper that show how the numerical range 

and the essential numerical range are related. Finally, we discuss the roles of the essential 

numerical range in operator theory. 
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1 Introduction 

 

Let 𝐻 be a Hilbert space equipped with the inner product 〈. , . 〉 and let 𝐵(𝐻) be the algebra of 

bounded linear operators acting on 𝐻. The relationship between the numerical range and the 

essential numerical range is given in the result by John Lancaster which is also reinforced by 

J. Christophe’s theorem. 

 

2 Basic concepts and preliminaries 

Here we start by defining some key terms that are useful in the sequel. 

 

Definition 2.1. Numerical range 𝑊(𝑇) of 𝑇 ∈ 𝐵(𝐻) is the collection of all complex numbers 

of the form 〈𝑇𝑥, 𝑥〉 where 𝑥 is a unit vector in 𝐻 i.e 

𝑊(𝑇) = {〈𝑇𝑥, 𝑥〉 ∶ 𝑥 ∈ 𝐻, ‖𝑥‖ = 1}. 

Definition 2.2. An inner product on a vector space 𝑉 is a map 〈. , . 〉: 𝑉 × 𝑉 → 𝕂 such that 

∀ 𝑥, 𝑦 𝑧 ∈ 𝑉 and 𝜆 ∈ 𝕂, the following properties are satisfied: 

(i) 〈𝑥, 𝑥〉 ≥ 0 and 〈𝑥, 𝑥〉 = 0,if and only if 𝑥 = 0. 
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(ii) 〈𝑥 + 𝑦, 𝑧〉 = 〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉. 

(iii) 〈𝜆𝑥, 𝑦〉 = 𝜆〈𝑥, 𝑦〉. 

(iv) 〈𝑥, 𝑦〉 = 〈𝑦, 𝑥〉̅̅ ̅̅ ̅̅ ̅. 

The ordered pair (𝑉, 〈. , . 〉) is called an inner product. 

Definition 2.3. Orthonormal basis; an orthonormal set 𝐸 is a basis for 𝐻 if every 𝑥 ∈ 𝐻 can 

be written uniquely in the form 

𝑥 = ∑ 𝛼𝑘

∞

𝑘=1

𝑒𝑘 

For some 𝛼𝑘 ∈ 𝕂 and 𝑒𝑘 ∈ 𝐸. 

 

3 Main results 

 

Theorem 3.1 (John Lancaster theorem). For 𝑇 ∈ 𝐻 we have 

 𝑊(𝑇)̅̅ ̅̅ ̅̅ ̅̅  = 𝑐𝑜𝑛𝑣{𝑊(𝑇) ∪ 𝑊𝑒(𝑇)}-(see [21]) 

 

Proof. Clearly, 𝑊(𝛼𝑇 + 𝛽) = 𝛼𝑊(𝑇) + 𝛽 for all 𝛼, 𝛽 ∈ 𝐶. (Therefore by rotation and 

translation, we can assume that 𝑊(𝑇)̅̅ ̅̅ ̅̅ ̅̅  is contained in the closed right half plane and 

 0 ∈ 𝐸𝑥𝑡(𝑊(𝑇))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑊(𝑇). Then there exists a sequence{𝑥 }𝑛=1
∞  

 of unit vectors of 𝐻 such that 〈𝑇𝑥, 𝑥〉 → 0. By weak sequential compactness of the unit ball 

of 𝐻, we can assume that {𝑥𝑛}𝑛=1
∞   converges weakly to 𝑥 ∈ 𝐻 with ‖𝑥‖ ≤ 1. We prove that 

𝑥 is the 0 vector, and hence 

0 ∈ 𝑊𝑒(𝑇). 

If ‖𝑥‖ = 1, then 𝑥𝑛 → 𝑥 strongly. But; 

|〈𝑇𝑥, 𝑥〉| ≤ |〈𝑇(𝑥 − 𝑥𝑛), 𝑥〉| + |〈𝑇𝑥𝑛, 𝑥 − 𝑥𝑛〉| + |〈𝑇𝑥𝑛 , 𝑥𝑛〉| 

                                          ≤ |〈𝑥 − 𝑥𝑛, 𝑇∗𝑥〉| + ‖𝑇‖‖𝑥 − 𝑥𝑛‖ + |〈𝑇𝑥𝑛, 𝑥𝑛〉| → 0 
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Hence 〈𝑇𝑥, 𝑥〉 = 0 and 0 ∈ 𝑊(𝑇). So assume0 < ‖𝑥‖ < 1. Clearly the operator 𝑅𝑒𝑇 is 

positive since 𝑊(𝑇) is contained in the closed right half plane. Then; 

‖(𝑅𝑒𝑇)
1
2‖

2

= 〈(𝑅𝑒𝑇)𝑥𝑛, 𝑥𝑛〉 

                                                                       = 𝑅𝑒〈𝑇𝑥𝑛, 𝑥𝑛〉 → 0, 

 

so ‖(𝑅𝑒𝑇)𝑥𝑛‖ → 0. This clearly yields 𝑅𝑒〈𝑇𝑥, 𝑥〉 = 0 so 〈𝑇𝑥, 𝑥〉 is purely imaginary. On the 

other hand; 

〈𝑇(𝑥 − 𝑥𝑛), 𝑥 − 𝑥𝑛〉 = 〈𝑇𝑥, 𝑥 − 𝑥𝑛〉 − 〈𝑇𝑥𝑛, 𝑥〉 + 〈𝑇𝑥𝑛, 𝑥𝑛〉 → 〈𝑇𝑥, 𝑥〉 

and 

‖𝑥 − 𝑥𝑛‖2 = 1 − 2𝑅𝑒〈𝑥 − 𝑥𝑛, 𝑥〉 − ‖𝑥‖2, 

so 〈𝑇𝑦𝑛, 𝑦𝑛〉 → −〈𝑇𝑥, 𝑥〉/(1 − ‖𝑥‖2) where 𝑦𝑛 =
(𝑥−𝑥𝑛)

‖𝑥−𝑥𝑛‖
. Thus we have produced a non-zero 

purely imaginary points in 𝑊(𝑇) which lie in the upper and lower half planes. However this 

implies that 0 is a non-extreme point of 𝑊(𝑇), thus completing the proof of the inclusion. 

The equality follows from the inclusion by the Krein-Milman theorem. 

 

Theorem 3.2. Let 𝑇  be an operator, then: 

(i). If 𝑊𝑒(𝑇) ⊂ 𝑊(𝑇) then 𝑊(𝑇) is closed. 

(ii). There exist normal finite rank operators R of arbitrarily small norm such that 𝑊(𝑇 + 𝑅) 

is closed 

Proof. Assertion (i) is due to Theorem 4.3.1. We prove the second assertion and implicitly 

prove Lancaster's result. 

We may find an orthonormal system {𝑥𝑛} such that the closure of the sequence {〈𝑇𝑥𝑛, 𝑥𝑛〉} 

contains the boundary of the essential numerical range, 𝛿𝑊𝑒(𝑇). Fix 휀 > 0. It is possible to 

find an integer 𝑝 and scalars 𝑧𝑗 , 1 < 𝑗 < 𝑝,  with |𝑧| < 휀 such that; 
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𝑐𝑜{〈𝑥𝑗 , 𝑇𝑥𝑗〉 + 𝑧𝑗: 1 < 𝑗 < 𝑝} ⊃ 𝛿𝑊𝑒(𝑇). 

Thus, the finite rank operators, 

𝑅 = ∑ 𝑧𝑗 ⊗ 𝑥𝑗  1<𝐽<𝑃 has the property that W(𝑇 + 𝑅) contains 𝑊𝑒(𝑇). We need this operator 

R. Indeed, setting 𝑋 = 𝑇 + 𝑅, we also have 𝑊(𝑋) ⊃ 𝑊𝑒(𝑋). We then claim that 𝑊(𝑋) is 

closed (this claim implies assertion 

(i)). By the contrary, there would exist, 𝑧 ∈ 𝛿𝑊(𝑋)̅̅ ̅̅ ̅̅ ̅̅ . 

Furthermore, since W(X) is the convex hull of its extreme points, we could assume that such a 

𝑧 is an extreme point of 𝑊(𝑋). By suitable rotation and translation, we could assume that 

0𝑧 = 0 and that the imaginary axis is a line of support of 𝑊(𝑋). The projection property for 

𝑊(∙) would imply that 𝑊(𝑅𝑒𝑋) = (𝑥, 0] for a certain negative number 𝑥, so that 0 ∈ 𝑊𝑒(𝑋). 

Thus we would deduce from the projection property for 𝑊𝑒(∙) that 𝑜 ∈ 𝑊𝑒(𝑋); a 

contradiction. (see, [19]) 

 

4 Role of the essential numerical range 

An operator 𝑇 ∈ 𝐻 has the small entry property if for every  휀 > 0, there is a basis {𝑥𝑛} such 

that |〈𝑇𝑒𝑛, 𝑒𝑚〉| < 휀 for all n and m. The condition 0 ∈ 𝑊𝑒(𝑇) is equivalent to the fact that 

the operator T has the small entry property. That is; if the operator T has the small entry 

property, then for any 휀 > 0, there is a basis so that all entries of the matrix of T have absolute 

value less than 휀. In particular, the diagonal entries of the matrix must have an accumulation 

point 𝜆 with |𝜆| < 휀 and since 𝑊𝑒(T) = {𝜆 : there is an orthonormal sequence {𝑥𝑛}𝑛=1
∞  with 

lim
𝑛→∞

〈𝑇𝑥𝑛, 𝑥𝑛〉 = 𝜆, it’s evident that 𝜆 ∈ 𝑊𝑒(T). Now since 𝑊𝑒(T) is closed, 0 ∈ 𝑊𝑒(T). We 

conclude that 0 ∈ 𝑊𝑒(T) is equivalent to the property that the operator T has the small entry 

property. Thus we infer that the essential numerical range serves to identify the class of 

operators that satisfy the small entry property. (see,[9]) 

We give the theorem by Q. F. Stout [12] that reinforces that the condition 
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0 ∈ 𝑊𝑒(T) is equivalent to the fact that the operator T has the small entry property. 

 

Theorem 4.1. For any 𝑇 ∈ 𝐻, the following conditions are equivalent: 

(a). 0 ∈ 𝑊𝑒(T) 

(b). There is a basis ξ such that 𝑇 ∈ kernel(hull(𝜅𝜉)). 

(c). T has the small entry property. 

(d). There exists a sequence of bases 𝜉(𝑛) such that 𝑇𝜉(𝑛) → 0 uniformly in H. (see, [12]) 

 

Proof. The proof can be found in  [12, Theorem 2.3] 

 

4.2 Zero diagonal operators 

An operator 𝑇 ∈ 𝐻 is called zero diagonal if there exists an orthonormal basis {𝑥𝑛} for H 

such that 〈𝑇𝑒𝑛, 𝑒𝑛〉 = 0 for all n. We state the theorem below by D. Bakic [9] without proof. 

 

Theorem 4.2. Let 𝑇 ∈ 𝐻 be a bounded operator on a separable Hilbert space, H. Then there 

exists an orthonormal basis {𝑒𝑛} for H such that lim〈𝑇𝑒𝑛, 𝑒𝑛〉 = 0 if and only if 0 is in the 

essential numerical range of T. 

 

Thus from this theorem, we infer that 0 is in the essential numerical range. We conclude that 

the notion that an operator T is zero diagonal is equivalent to the fact that 0 ∈ 𝑊𝑒(T). Thus 

the essential numerical range also serves to identify zero diagonal operators (see, [1-9, 11-

24]). 

The essential numerical range plays an important role in solving problems from the operator 

theory. The list below of mutually equivalent conditions indicates the importance of the 

essential numerical range. 
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Theorem 4.3. For an operator 𝐴 ∈ 𝐻 the following conditions are mutually equivalent. 

 

(a). There exists an orthonormal basis {𝑒𝑛} for H such that lim
𝑛

〈𝐴𝑒𝑛, 𝑒𝑛〉 = 0. 

(b). 0 ∈ 𝑊𝑒(A). 

(c). There exists an orthonormal sequence {𝑎𝑛} in H such that lim
𝑛

〈𝐴𝑎𝑛, 𝑎𝑛〉 = 0. 

(d). There exists a sequence of unit vectors (𝑥𝑛) in H weakly converging to 0 such that 

lim
𝑛

𝑇𝑥𝑛= 0. 

(e). There exists an orthogonal projection 𝑃 ∈ 𝐻 with an infinite dimensional range such that 

PAP is a compact operator. 

(f). For each 휀 > 0 there exists an orthonormal basis {𝑒𝑛} for H such that |〈𝐴𝑒𝑛, 𝑒𝑚〉| < 휀, 

for all n and m. 

(g). For each 휀 > 0 and p > 1 there exists an orthonormal basis {𝑒𝑛} for H such that 

∑ |〈𝐴𝑒𝑛, 𝑒𝑛〉|𝑝∞
𝑛=1 < 휀. 

(h). There exists a sequence of zero diagonal operators 𝐴𝑛in H such that 𝐴 =

(𝑛𝑜𝑟𝑚) lim
𝑛

𝐴𝑛. 

(i). There exists a zero diagonal operator 𝑇 ∈ 𝐻 and a compact operator 𝐾 ∈ 𝒦(𝐻) such 

that  A = T + K. 

(j). There exists an operator 𝐵 ∈ 𝐻 such that 𝐴 = 𝐵∗𝐵 − 𝐵𝐵∗. In this case A is self-adjoint 

necessarily. 

(k). The spectrum of A has at least one non-negative limit point and at least one non-positive 

limit point. (see, [9]) 

 

Proof. (a) ⇔ (b), This is due to the assertion of Theorem 4.3.2 above. 
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(b), (c), (d) and (e) are equivalent, (see, [5]). 

(e) ⇔ (f) ⇔ (g) 

(h) ⇔ (b) 

(i) ⇔ (a) 

(a) ⇒ (i): Let us take the orthonormal basis from (a) and define 𝐾 ∈ 𝐻 by 

 𝐾𝑒𝑛 = 〈𝐴𝑒𝑛, 𝑒𝑛〉𝑒𝑛 for all n. Since 〈𝐴𝑒𝑛, 𝑒𝑛 → 0, K is compact. Obviously, 

T = A − K is zero diagonal. 

(j) ⇔ (k) ⇔ (b) 
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