NEW SCHWARZ NORMS ON B(H)

I. O. Okwany, G. K. R. Rao, Alfred Manyonge
Department of Pure and Applied mathematics, Maseno University
P. O. Box 333, Maseno-Kenya
N. B. Okelo
Department of Pure and Applied mathematics, Jaramogi Oginga Odinga University of Science and Technology,
Box 210-40601, Bondo-Kenya.
Email: bnyaare@yahoo.com

Abstract

In this paper, we give results on new Schwarz norms in $B(H)$. We also give a characterization for a new class of norms in Banach space setting.

1 Introduction

A norm $\|\cdot\|^{*}$ on $B(H)$ which is equivalent to the operator norm $\|$.$\| is called a$
Schwarz norm if $\|\mathrm{T}\| \leq 1$ implies $\|f(T)\| \leq\|F\|_{\infty} \equiv \max _{|z| \leq 1}|f(z)|$
$\left.\ldots \ldots \ldots \ldots \ldots \ldots .^{*}\right)$ for any analytic function f with $\mathrm{f}(0)=0$ and $\|F\|_{\infty}<1$. Von
Neumann [11] first showed that if $T \in B(H)$ then the usual operator norm $\|T\|=\sup \{\langle T x, x\rangle: x \in H,\|x\|=1\}$ is a Schwarz norm using the spectral representation of aa unitary operator U i.e $f(U)=\int_{0}^{2 \Pi} f\left(e^{i \theta}\right) d E(\theta)$ generates a norm $\|f(U) x\|^{2}=$ $\int_{0}^{2 \Pi}\left|f\left(e^{i \theta}\right)\right|^{2} d E\|\theta\|^{2}$ where $E(\theta)$ is a positive spectral measure of U . the inequality $(*)$ above then follow from this norm. now the numerical radius of an operator $T \in B(H)$ is defined as $w(T)=\sup \{|z|: z \in W(T)\}$ where $\mathrm{W}(\mathrm{T})$ is the numerical range of T , i.e the set $\mathrm{W}(\mathrm{T})=\{\langle T x, x\rangle: x \in H,\|x\|=1\}$. Berger and Stampfli [2] proved that the numerical radius $\mathrm{w}(\mathrm{T})$ is a Schwartz norm using the theory of unitary dilation i.e $\mathrm{w}(\mathrm{T})$ ≤ 1 if and only if there is a unitary operator U on $K \supset H$ such that $T^{n}=2 P U^{n} / H(n=1,2, \ldots)$. Nagy and Foias [3] and later other papers improved on this to obtain the ρ - radius, $w_{p}(T)$ of an operator as $W_{p}(T) \equiv \inf \left\{\lambda>0 ; \frac{1}{\lambda} T \in C_{p}\right\}$ where C_{p} is the class of operator with ρ dilations. Thus for a complex valued function $\mathrm{f}(\mathrm{z})$ defined and analytic on the closed unit disk with $\mathrm{f}(0)=0$, if T has a ρ dilation U , then by series expansion, $\quad f(T)^{n}=\rho P f(U)^{n} / H(n=1,2, \ldots)$ and it can then be proved that $w_{p}(f(T)) \leq\|f\|_{\infty}$ so that the inequality $(*)$ is achieved.

Using the two norms $\|\mathrm{T}\|$ and $\mathrm{w}(\mathrm{T})$ (as proved by Von Neumann and Berger -Stampfli to be Schwartz norms), William [1] constructed a class S_{c} of operators which he used to build a family of Schwartz norms.

2. Preliminaries

We will in this section give the definitions that will be essential in our study. In the following $\mathbf{K}=\mathbf{R}$ or \mathbf{C}

Definition 2.1 if $T \in B(H)$, then the operator $T^{*}: H \rightarrow H$ defined by
$\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \forall x, y \in H$ is called the adjoint of T . (T^{*} is also in $\mathrm{B}(\mathrm{H})$ and $\left\|\mathrm{T}^{*}\right\|$ $=\left\|\mathrm{T}^{*}\right\|$

Definition 2.2 an operator $T \in B(H)$ is said to be self adjoint if $\mathrm{T}^{*}=\mathrm{T}$ and if T is linear on a linear subspace M of Hilbert space H into M then it is said to be Hermitian if in addition $\langle T x, y\rangle=\langle x, T y\rangle \forall x, y \in M$

Definition 2.3 Let H be a complex Hilbert space and $T \in B(H)$. Then there exists unique self adjoint operators $\mathrm{A}, \mathrm{B} \in B(H)$ such that $T=A+i B, \mathrm{~A}$ and B are given by $A=\frac{1}{2}\left(T+T^{*}\right), B=\frac{1}{2 i}\left(T+T^{*}\right)$ so that A is called real part of T denoted by ReT and B the imaginary part of T denoted by ImT. Note that $\operatorname{Re}\langle T x, x\rangle=\langle(\operatorname{Re} T) x, x\rangle$ for every $\mathrm{x} x \in H$, indeed $\langle T x, x\rangle=\frac{1}{2}\left\langle\left(T+T^{*}\right) x, x\right\rangle+i \frac{1}{2}\left\langle\left(\frac{T T^{*}}{2}\right) x, x\right\rangle$ and $\langle T x, x\rangle$ being a complex number we have $\langle T x, x\rangle=\mathrm{a}+\mathrm{i} \mathrm{b}$, where a, b are real numbers given by $a=\langle(\operatorname{Re} T) x, x\rangle, b=\langle(\operatorname{Im} T) x, x\rangle$

Definition 2.4 let H be a complex Hilbert space and $\mathrm{T} \in B(H)$, the numerical range of T is the set $\mathrm{W}(\mathrm{T}) 1 \subset C$ defined by $W(T)=\{\langle T x, x\rangle: x \in H$, and, $\|x\|=1\}$

Definition 2.5 the numerical radius $\mathrm{w}(\mathrm{T})$ of an operator $T \in B(H)$ is the number defined by the relation $w(T)=\sup \{|\lambda|: \lambda \in W(T)\}$

Definition 2.6 let X, Y be normed liner spaces over K and $T: X \rightarrow Y$ be a linear transformation, then T is said to be compact if for every bounded subset M of X , the image $\overline{T(M)}$ (strongly closure of $\mathrm{T}(\mathrm{M})$ in X) is compact or equivalently, if X, Y be normed linear spaces over K and $T: X \rightarrow Y$ be a linear T is said to be compact if and only if for every bounded sequence (X_{n}) of elements of X , the sequence $\left(\mathrm{T}\left(\mathrm{X}_{\mathrm{n}}\right)\right.$) has a subsequence which converges strongly in Y . the set $\mathrm{K}(\mathrm{X}, \mathrm{Y})$ of all compact linear operators $T: X \rightarrow Y$ is a linear subspace of $\mathrm{B}(\mathrm{X}, \mathrm{Y})$ which is a set of all bounded linear operators $T: X \rightarrow Y$

Definition 2.7 a Banach algebra \mathbf{B} is a Banach space $(\mathbf{B},\| \| \|$ in which for every $\mathrm{x}, \mathrm{y} \in \mathbf{B}$ such that
i. $\quad(\lambda x) \mathrm{y}=\lambda(\mathrm{xy})=\mathrm{x}(\lambda \mathrm{y})$ for all λ in \mathbf{K}
ii. $\quad(x+y) z=x z+y z$ for all x, y, z in \mathbf{B}
iii. $\quad x(y+z)=x y+x z$ for all x, y, z in \mathbf{B}
iv. $\quad\|x y\| \leq\|x\|\|y\| \mathrm{x}, \mathrm{y}, \mathrm{z}$ in \mathbf{B}

Definition 2.8 suppose A is arbitrary Banach algebra (commutative or not), a mapping $*: A \rightarrow \mathbf{A}$ is called an involution of \mathbf{A} or \mathbf{A} is called an involutive Banach space if;

1. $(x+y)^{*}=x^{*}+y^{*}$
2. $(\lambda x)^{*}=\bar{\lambda} x^{*} \lambda \in \mathbf{C}$
3. $(\lambda x)^{*}=y^{*} x^{*}$
4. $\left(x^{*}\right)^{*}=x$ for all $\mathrm{x}, \mathrm{y} \in \mathbf{A}$

An involutive Banach algebra \mathbf{A} is called a \mathbf{B}^{*} algebra if $\left\|x^{*} x\right\|=\|x\|^{2}$ for all $\mathbf{x} \in \mathbf{A}$
Definition 2.9 let X be a linear space over K and M be a linear subspace of X. for each $\mathrm{x} \in X$ we define $\mathrm{x}+\mathrm{M}=\{x+y: y \in M\}$, and if $x, x^{\prime} \in X$ then $\mathrm{x}+\mathrm{M}=x^{\prime}$ +M if and only if $\mathrm{x}, x^{\prime} \in M$

Definition let $(X,\| \| \|)$ be a normed linear space and M be a closed linear subspace of X ,for each element $\mathrm{x}+\mathrm{M}$ in X / M, define a function $\|x+M\|=\inf \{\|x+y\|: y \in M\}=\operatorname{dis}(x, M)$ then $\|\cdot\| \|$ is a norm in X / M i.e (X/M, $\|\|\cdot\|)$ is a Banach space if $(X / M,\| \|\| \|)$ is a Banach space. If M is not closed then
$\|x+M\|=0 \Rightarrow x \in M$ and $\therefore x+M \neq M$, the zero element of X / M. therefore $\|\mid \cdot\|$ is a seminorm.

Definition suppose X in the above definition is $\mathbf{B}(\mathbf{H})$; then $\mathbf{B}(\mathbf{H}) / \mathbf{K}(\mathbf{H})=$ $\{T+K(H): T \in B(H)\}$ is called a Calkin algebra. For each Tin $\mathrm{K}(\mathrm{H})$, there corresponds a unique in \hat{T} on $\mathbf{B}(\mathbf{H}) / \mathbf{K}(\mathbf{H})$ and this correspondence given by $T \mapsto \hat{T}$ and can also be given by $T \rightarrow(T+K(H))=\hat{T}$

Main results

Proposition If $\|T\|_{\mathrm{c}}$ is a norm and $\|\hat{T}\|_{\mathrm{c}}$ is a seminorm, then the sum is a Schwarz norm i.e taking the sum of two different Schwarz norm applied to T and to the image of T in the Calkin algebra. For any $c \geq 1$ we define on $\mathrm{B}(\mathrm{H})$ the function $\|\mathrm{T}\|^{*} \mathrm{c}=\|\mathrm{T}\|_{\mathrm{c}}+\|\hat{T}\|_{\mathrm{c}} \forall \mathrm{T} \in \mathrm{B}(\mathrm{H})$ where \hat{T} denotes the image of T in the Calkin algebra and $\|\hat{T}\|_{\mathrm{c}}$ being a seminorm as indicated in definition 1.2.19. then $\mathrm{T} \rightarrow\|\mathrm{T}\|^{*} \mathrm{c}$ is a Schwarz norm on $\mathrm{B}(\mathrm{H})$ and is not in the class constructed by Williams.
proof. First we remark that we can construct a more general Schwarz norm on $\mathrm{B}(\mathrm{H})$ by taking the sum of two different Schwarz norms applied to T and
to the image of T in the Calkin algebra. Also since $\|\mathrm{T}\|_{\mathrm{c}}$ is a norm and $\|\hat{T}\|_{\mathrm{c}}$ is a seminorm, it follows that the sum is a Schwarz norm. Suppose that Q is a positive hermitian operator with the property $0<m I \leq Q \leq M I$, where $m=\inf \{\langle T x, x\rangle:\|x\|=1\} \quad M=\sup \{\langle T x, x\rangle:\|x\|=1\}$ Then we can construct the operator $Q^{\frac{1}{2}}$ which is also positive and invertible. The following new class S_{Q} of operators is a generalization of the class S_{c} to which it reduces when $Q=$ cI

Definition. If Q is a Hermitian operator $0<\mathrm{mI}<\mathrm{Q}<\mathrm{MI}$ then the class S_{Q} is the set of all operators $T \in B(H)$ with the following properties

1. $\delta(\mathrm{T})$ is in the unit disk.
2. $\operatorname{Re}\left(I+\sum Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}} z^{n}\right) \geq 0$, for all $|\mathrm{z}|<1$

We can prove some results about this class as for the class S_{c} obtained by Williams.

Theorem 2.15. If f is a rational function with no poles in the closed unit disk and $\|f\|_{\infty}<1, f(0)=0$ then for any $T \in S_{Q}, f(T) \in S_{Q}$ In this proof, we use the approach of Williams [1]:

Proof:
The function $z \mapsto\left\langle\left(\sum_{n=1}^{\infty} Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}} z^{n}\right) x, x\right\rangle$ is with real part positive. By the Herglotz theorem ,there exists a positive measure μ_{x} such that $\|x\|^{2}+c \sum_{n=1}^{\infty} z^{n}\left\langle Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}} x, x\right\rangle=\int_{0}^{2 \Pi} d \mu_{x}(t)$ for all $|\mathrm{z}|<1$ now,
From these relations, we obtain immediately that for any polynomial $p(z)=\sum a_{i} z^{i}$ and any $\left.x \in H, P /\left(Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}}\right) x, x\right\rangle=2 \int_{0}^{2 \Pi} p\left(e^{i t}\right) d \mu_{x}(t)$ and if we take $p^{n}(z)$,we obtain $P^{n}\left\langle\left(Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}}\right) x, x\right\rangle=2 \int_{0}^{2 \Pi} p^{n}\left(e^{i t}\right) d \mu_{x}(t)$ This implies that if $\|$ $p \|_{\infty}=1, p^{n}\left(Q^{2} T Q^{2}\right)$ is a bounded operator and for $z,|z|<1$, we obtain. $\left\langle 1+c \sum_{n=1}^{\infty} z^{n} p^{n}\left(Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}}\right) x, x\right\rangle=\|x\|^{2}+2 \sum_{n=1}^{\infty} z^{n} \int_{0}^{2 \Pi} p^{n}\left(e^{i t}\right) d \mu_{x}(t)=$ $\int_{0}^{2 \Pi} \frac{1+z p\left(e^{i t}\right)}{1 z p\left(e^{i t}\right)} d \mu_{x}(t)$ From these relations, we obtain immediately that for any polynomial $p(\mathrm{~T}) \in S_{Q}$ when p is a polynomial . now if f is any functional which is
rational and with no poles in the closed unit disk, then $\mathrm{f}(\mathrm{T}) \in S_{Q}$. Now this theorem shows that S_{Q} is a family of distinct Schawrz norms. $\mathrm{f}(\mathrm{T}) \in S_{Q}$
Proposition 2.16. The operator $T \in B(H)$ is in S_{Q} if and only if :

1. $\delta(\mathrm{T})$ is in the unit disk
2. $\operatorname{Re}\left\langle\left(Q^{\frac{1}{2}}(\mathrm{I} \mathrm{zT})^{1} \mathrm{Q}^{\frac{1}{2}} \mathrm{x}, \mathrm{x}\right)\right\rangle\langle Q x, x\rangle+\|x\|^{2} \geq 0$

Proof; the condition,
$\operatorname{Re}\left(I+\sum Q^{\frac{1}{2}} T^{n} Q^{\frac{1}{2}} z^{n} \geq 0\right)$ is equivalent to the following $\operatorname{Re}\left[\left(\mathrm{Q}^{1 / 2}(\mathrm{I} z \mathrm{~T})^{1} \mathrm{Q}^{1 / 2}\right.\right.$
$\mathrm{Q}+\mathrm{I}) \mathrm{x}, \mathrm{x}>$] Which is our assertion. From this characterization we obtain the following result
Proposition 2.17. If $\mathrm{Q} \geq 1$, then $T \in S_{Q}$ if and only if

1. $\delta(\mathrm{T})$ is in the unit disk
2. $\operatorname{Re}<\mathrm{Q}^{1 / 2}(\mathrm{IzT}) \mathrm{Q}^{1 / 2} \mathrm{x}, \mathrm{x}>\left\|\mathrm{Q}^{1 / 2} \mathrm{x}\right\|^{2} \quad\|\mathrm{x}\|^{2}=<(\mathrm{Q} \mathrm{I}) \mathrm{x}, \mathrm{x}>$

Proof:

This follows directly from the above proposition 3.1.4. The following theorem gives information about the S_{Q} class which is similar to that given in proposition 2 for the S_{c} class.
Proposition 2.18. If Q is a positive hermitian operator ,then the following assertions hold.

1. $\mathrm{S}_{\mathrm{Q}}=\mathrm{SQ}^{*}=\left\{\mathrm{T}^{*}: \mathrm{T} \in \mathrm{SQ}\right\}$
2. If $\mathrm{Q}_{1}<\mathrm{Q}_{2}$ then $\mathrm{S}_{2} \subseteq \mathrm{~S}_{1}$
3. For $\mathrm{Q} \geq \mathrm{I}, \mathrm{S}_{\mathrm{Q}}$ is a convex bounded , circled and weakly compact set in (H) (it is also in the neighborhood of zero)
Proof: Now we prove the assertion (1) above, Since (T) $\subset \mathrm{U}$, it follows that δ (T $\left.{ }^{*}\right) \subset \mathrm{U}$. Indeed $\delta\left(\mathrm{T}^{*}\right)=(\delta(\mathrm{T}))^{*}$ (the star on the right side denotes the complex conjugation, i.e, $(\delta(\mathrm{T}))^{*}=\left\{\mathrm{z}^{*}: \mathrm{z} \in(\mathrm{T})\right\}$. Moreover, since $|\mathrm{z}|=\left|\mathrm{z}^{*}\right|<1$,for all $x \in H$
Thus $T^{*} \in \operatorname{SQ}$, i.e $\mathrm{SQ}^{*} \subset \mathrm{SQ}$,where $\mathrm{Sc}^{*}=\left\{\mathrm{T}^{*}: \mathrm{T} \in \mathrm{S}_{\mathrm{c}}\right\}$. Likewise $\mathrm{SQ}_{\mathrm{Q}} \subset \mathrm{SQ}^{*}$ and hence $\mathrm{SQ}_{\mathrm{Q}}=\mathrm{SQ}^{*}$. To prove (2): let $\mathrm{Q}_{2}<\mathrm{Q}_{1}$.Now $\mathrm{T} \in \mathrm{S}_{\mathrm{Q}_{1}} \Rightarrow(\mathrm{~T}) \subset \mathrm{U}$ and (Q 11 1) $\|\mathrm{Tx}\|^{2}+\left|2 \mathrm{Q}_{1}{ }^{1}\|\mathrm{Tx}, \mathrm{x} \mid \leq\| \mathrm{x} \|^{2}\right.$
$\Rightarrow(\mathrm{Q} 21)\|\mathrm{Tx}\|^{2}+\left|\mathrm{Q}_{2}{ }^{1}\|\mathrm{Tx}, \mathrm{x} \mid \leq\| \mathrm{x} \|^{2}\right.$.
Thus $T \in S_{Q}$. Hence $S_{Q_{1}} \subseteq S_{Q_{2}}$. To prove the convexity of S_{c} for $\mathrm{c} \geq 1$, we use the property (iv). If T_{1} and T_{2} are two operators and $\mathrm{Q}_{2}, \mathrm{Q}_{2}$ are their corresponding positive Hermitian operator as described just after proposition 3.1.1,then from
$\left\|\mathrm{T}_{1}+\mathrm{T}_{2}\right\|^{2} \leq 2\left(\left\|\mathrm{~T}_{1}\right\|^{2}+\left\|\mathrm{T}_{2}\right\|^{2}\right)$. Indeed $\left\|\mathrm{T}_{1}+\mathrm{T}_{2}\right\| \leq\left\|\mathrm{T}_{1}\right\|+\left\|\mathrm{T}_{2}\right\|$. Also $\left(\left\|\mathrm{T}_{1}\right\|-\left\|\mathrm{T}_{2}\right\|\right)^{2} \geq 0 \Rightarrow\left\|\mathrm{~T}_{1}\right\|^{2}+\left\|\mathrm{T}_{2}\right\|^{2} \geq 2\left\|\mathrm{~T}_{1}\right\|\left\|\mathrm{T}_{2}\right\|$ thus $\left\|\mathrm{T}_{1 \mathrm{x}}+\mathrm{T}_{2} \mathrm{x}\right\|^{2} \leq\left\|\mathrm{T}_{1 \mathrm{x}}\right\|^{2}+$ $\left\|\mathrm{T}_{2 \mathrm{x}}\right\|^{2}+2\left\|\mathrm{~T}_{1 \mathrm{x}}\right\|\left\|\mathrm{T}_{2 \mathrm{x}}\right\| \leq 2\left(\left\|\mathrm{~T}_{1 \mathrm{x}}\right\|^{2}+\left\|\mathrm{T}_{2 \mathrm{x}}\right\|^{2}\right)$. Now if T_{1} and T_{2} are members of S_{Q},then using condition (2) in proposition 3.1.5, and a simple calculation, we
have $1 / 2\left(T_{1}+T_{2}\right) \in S_{Q}$. From the properties of S_{Q} in the proposition 3.1.6,we further obtain the following useful proposition. Proposition 2.19. For any bounded hermitian operator $\mathrm{Q}>\mathrm{I}$, the function, $T \rightarrow T\|\| Q=\inf \{s: T \in s S Q\}$ is a Schwarz norm on $B(H)$.From this class of Schwarz norms, we can obtain , using the Calkin algebra, another class of Schwarz norms.
Proposition 2.20. Let $\mathrm{Q}_{1} \mathrm{Q}_{2}$ be two bounded hermitian operators and $\mathrm{Q}_{\mathrm{i}} \geq \mathrm{I} \mathrm{i}=1,2$. In this case the function on $\mathrm{B}(\mathrm{H})$ defined by $T \mapsto\|T\|_{Q 1}+\|\hat{T}\|_{Q 2}$ where \hat{T} denotes the image of T in the Calkin algebra of H , is a Schwarz norm on $\mathrm{B}(\mathrm{H})$
Remark 2.21. The above construction of Schwarz norms can be given in the case of B^{*}-algebras. For the construction of Schwarz norms we can use the representations of the B^{*}-algebra in the algebra $\mathrm{B}(\mathrm{H})$ for some H

References

[1] J.P Williams,(1968),Schwarz norms for operators, Pacific Journal of Mathematics. 24, No. 1
[2] C.A Berger and Stampfli,(1967), Mapping theorems for the numerical range, to appear in American J. Math. 26, 247-250.
[3] B.S.Z Nagy and C.Foias,(1983), On certain classes of power-bounded operators, Acta.Sci. Math. Ser. III 18(38) 317-320.
[4] C.Foias,(1957), Sur certains theoremes de von Neumann concernant les ensemplesspectraux , Acta.Math.Sci.(Szeged) 85 15-20.
[5] J.G Stampfli,(1966),Normality and the numerical range of an opera-tor,Bull Amer.Math.Soc.. 72 1021-23.
[6] F.F. Bonsall, J. Duncan, Numerical Ranges of operators on Normed spaces and elements of Normed algebras, London Math. Soc. Lecture Notes series 2, Cambridge University Press, London-New York, 1971.
[7] F.F. Bonsall, J. Duncan, Numerical Ranges II, London Math. Soc. Lec-ture notes Series 10, Cambridge University Press, London-New York, 1973.
[8] E.Kreyszig, Introduction to functional analysis with applications, University of Windsor,1978.
[9] J.A.R Holbrook,Inequalities of von Neumann type for small matrices, Function Spaces(ed.K.Jarosz),Marcel Dekker, 1992,273-280
[10] T.Ando Construction of Schwarz norms,Operator Theory.Advances and Application.,127(2001) 29-39
[11] J.Von Neumann,Eine Spektraltheorie fur allgemeine Operatoren eines Unitaren Raumes,Math.Nach., 4 (1951),258-281
[12] C.A,Berger,A strange dilation theorem (Abstrac-t),Amer.Math.Soc.Notice, 12 (1965)590

