CHARACTERIZATION OF SCHWARZ NORMS IN BANACH SPACES

I.O. OKWANY AND N. B. OKELO SCHOOL OF MATHEMATICS AND ACTUARIAL SCIENCE, JARAMOGI OGINGA ODINGA UNIVERSITY OF SCIENCE AND TECHNOLOGY, P. O. BOX 210-40601, BONDO-KENYA

Abstract

In this paper, we characterize Schwarz norms in Banach spaces. We give new results on the s-norms in B(H).

1 Introduction

Suppose that f is an analytic function in the open unit disk U = { $z \in \mathbb{C} : |z| < 1$ } and is bounded i.e. $\| f \|_{\infty} = \sup\{|f(z)| : z\mathbb{C}U\} < \infty$. If f has the following additional properties, f(0) = 0, $\| f \|_{\infty} < 1$, then the following (Schwarz Lemma) holds:

If f is analytic in the open unit disk as described above and,

- (i.) $|\mathbf{f}(\mathbf{z})| \leq |\mathbf{z}|, \mathbf{z} \mathbb{C} \mathbf{U}$
- (ii.) $|f(0)| \le 1$,

and if the equality appears in (i) for one $z \in U - \{0\}$, then f(z) = az, where *a* is a complex constant with |a|= 1 and also if the equality appears in(ii), f behaves similarly. In case of operators, we have that, if $|T| \le 1$, then $|f(T)| \le ||f||$ for each $f \in R(D)$ such that f(0) = 0. Here R(D) is the (supnorm) algebra of the rational functions with no poles in the closed unit diskD and f(T) defined by the usual Cauchy integral around a circle slightly larger than the unit circle.[5]We note here that a contraction (i.e an operator T such that ||T|| < 1) $T \in B(H)$ has some relation with the closed unit disk of the complex plane, say for any contraction T and any complex-valued function f(z)defined and analytic on the closed unit disk ,then by von Neumann [9],[11] the norm equality holds; $\| f(T) \| \le \| f \|_{\infty} = \max_{|z| \le 1} |f(z)|$ where the operator f(T) is defined by the usual functional calculus[10]. The above lemma has an interesting application in the theory of operators namely the following assertions hold, if f is analytic in the open unit disk and f(0) = 0 with $\| f \|_{\infty} < 1$, then for any operator $T \in B(H)$, $\| T \| < 1$, (Berger and Stampfli) [2] we have $\| f(T) \| < \| T \|$. Clearly if we have an equality for some T, then f is of the form f(z) = az. Where a is a complex constant with |a|=1. A norm, say, $\| T \| < 1$ on the algebra B(H) of all bounded operators T, is called a Schwarz norm if it is equivalent to the usual norm $\| . \|$ and the Schwarz lemma holds for it, i.e for any f analytic in the open unit disc U with f(0) = 0 and $\| f \|_{\infty} < 1$, and for any $T \in B(H)$, $\| T \| < 1$,

2 **Preliminaries**

We will in this section give the definitions that will be essential in our study. In the following $\mathbf{K} = \mathbf{R}$ or \mathbf{C}

Definition 2.1. For a set of points X,the pair (X; K) is called a linear space if for all $x,y \in X$ and $\alpha, \beta \in K$ then $\alpha x + \beta y \in X$

In case $\mathbf{K} = \mathbf{R}$ then the pair is referred to as real linear space but if $\mathbf{K} = \mathbf{C}$ then it is a complex linear space.

Definition 2.2. Let (X; **K**) be a linear space as defined above. A mapping $\| \cdot \| \colon X \to \mathbb{R}$ is called a norm on X if it satisfies the following properties (norm axioms);

- (i) $\|\mathbf{x}\| \ge 0$ for all $\mathbf{x} \in \mathbf{X}$ (non-negativity)
- (ii) If $x \in X$ and ||x|| = 0, then x = 0 (zero axiom)
- (iii) $\|\lambda x\| = |\lambda| \|x\|$ for all $x \in X$ and $y \in K$ (homogenity)
- (iv) $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| \forall \mathbf{y}, \mathbf{z} \in X$ (triangular inequality)

The ordered pair $(X; \|:\|)$ is called a normed linear space (n.l.s) over **K**

Definition 2.3. Suppose property number (ii) (zero axiom) in the above definition fails ,i.e if $x \in X$ and ||x|| = 0; x = 0, then the function, $||:||:X \to \mathbb{R}$

is referred to as seminorm on X.

RD®

Definition 2.4. Let (X,**K**) be a linear space and $\| : \|_1, \| : \|_2$ be norms on X we say that $\| : \|_1$ and $\| : \|_2$ are equivalent if their exists positive reals $, \beta$, such that

 $\alpha \| x \|_1 \le \| x \|_2 \le \beta \| x \| \forall x \in X$. The two norms generate the same open sets (same topology)

Definition 2.5. A sequence (x_n) is said to converge strongly in a normed linear space $(X, \| : \|)$ if their exists $x \in X$ such that $\lim_{n\to\infty} ||x_n \cdot x|| = 0$

Definition 2.6. Let $(X, \| : \|)$ be a normed linear space and ρ be the metric induced by $\| : \|$. If (X, ρ) is a complete metric , then we call $(X, \| : \|)$ a Banach space or strongly complete normed linear space. (A normed linear space $(X; \| : \|)$ is a Banach space if every strong Cauchy sequence of elements of X converges strongly in X)

Definition 2.7. Let (X, K) be a linear space. If M is a subset of X such that x, $y \in M$ and

 $\alpha, \beta \in K \rightarrow \alpha x + \beta y \in M$, then M is called a subspace of X

Definition 2.8. Let X be a linear space over **K** and $<,>: X \leftrightarrow \mathbf{K}$ be a function with,

- (i) $\langle x, x \rangle \ge 0$ for all $x \in X$
- (ii) $\langle \mathbf{x}, \mathbf{x} \rangle = 0 \rightarrow \mathbf{x} = 0$
- (iii) $\langle y, x \rangle = \langle x, y \rangle^*$ or $\langle x, y$ if $\mathbf{K} = \mathbb{C}$ or $\mathbf{K} = \mathbb{R}$ respectively for all $x, y \in \mathbf{X}$. where $\langle x, y \rangle^*$ denotes the conjugate of the complex number $\langle x, y \rangle$.
- (iv) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$ for all x, y $\in X$ and all $\lambda \in K$.
- (v) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$ for all x, y, z \in X The function $\langle . \rangle$ is called inner-product (i.p)

function and the real or complex number

<x, y>is called the inner product of x and y (in this order). The ordered pair (X,<.>) is called an inner product space or pre-Hilbert space over K. Let (X,<.>) be an inner-product space. The norm in X is given by $\|x\| = \sqrt{<x,x>}$ for all $x \in X$ and is called the norm determined by (or induced by) the inner-product function of x. The metric ρ determined by this norm $\|.\|$ as defined above is $\rho(x, y) = \|x - y\|$ for all x, $y \in X$ is called the metric induced by the inner-product function ||x||, defined above, $(X, \|.\|)$ is strongly complete i.e(X, $\|.\|$) is a Banach space, then we refer to $(X, \|.\|)$ as a Hilbert space i.e a Hilbert space is a complete inner product space.

Definition 2.9. Let H be a complex Hilbert space and T be a linear operator from H to H. T is said to be positive if $\langle Tx, x \rangle \ge 0$, for all x in H. This can be denoted by T ≥ 0 or $0 \le T$. T is said to be strictly positive or positive definite if $\langle Tx, x \rangle > 0$ for all $x \in H \setminus \{O\}$

Definition 2.10. If $T \in B(H)$, then the operator $T^*: H \rightarrow H$ defined by $\langle Tx, y \rangle = \langle x, T^*y \rangle$ for all x,y in H is called the adjoint of T. (T^* is also in B(H)) and $||T^*|| = ||T||$

Definition 2.11. An operator $T \in B(H)$ is said to be self – adjoint if $T^* = T$ and if T is linear on a linear subspace M of a Hilbert space H into M, then it is said t be Hermitian addition $\langle Tx, y \rangle = \langle x, Ty \rangle \forall x, y \in M$

Defination 2.12.Let H be a complete Hilbert space and $T \in B(H)$. Then there exist unique selfadjoint operators A,B $\in B(H)$ such that T=A + iB, A and B are given by $A = \frac{1}{2}(T + T^*)$,

 $B = \frac{1}{2i}(T - T^*)$ so that A is called real part of T denoted by ReT and B the imaginary part of T

denoted by ImT. Note that $\operatorname{Re}\langle Tx, x \rangle = \langle (\operatorname{Re}T)x, x \rangle$ for every $x \in H$. Indeed $\langle Tx, x \rangle = \frac{1}{2} \langle (T + T^*)x, x \rangle + i \frac{1}{2} \langle \left(\left(\frac{T - T^*}{2} \right)x, x \right), \text{ being a complex number, we have } \langle Tx, x \rangle = a$

+ ib, where a, b are real numbers given by $a = \langle (\text{Re}T)x, x \rangle$, $b = \langle (\text{Im}T)x, x \rangle$

Defination 2.13.Let H be a complex Hilbert space and $T \in B(H)$, The numerical range of T is the set W(T) $\subset \mathbb{C}$ defined by W(T) = $\langle Tx, x \rangle : x \in H$ and ||x|| = 1}

3. Main Results

It is quite natural to investigate the problem about the existence of Schwarz norms on the algebra B(X) of all bounded operators on a Banach space X. For this we recall that a function [.] on X xX into \mathbb{C} is called a semi-inner product if the following conditions are satisfied:

- 1. $[x_1 + x_2, y] = [x_1, y] + [x_2, y]$
- 2. $[ax, by] = ab^* [x, y]$
- 3. $|[x, y]| \le ||x|| \cdot ||y||$

4. [x,x] > 0 for $x \neq \overline{0}$ for all $x_1, x_2, x, y \in X$ and a, b are complex numbers.

Theorem 3.1. On every Banach space there exist a semi-inner product [,] with the property[x, x] = $||x||^2$ (i.e it is compatible with the norm).Indeed for any $x \in X$ we define the functional $f_x \in \mathbf{X}^2$. (Where X denotes the space of all the bounded functionals on X)with the properties;

(i) $\|\mathbf{f}_{\mathbf{x}}\| = \|\mathbf{x}\|$

(ii)
$$f_x(x) = \|x\|^2$$

The existence of the functional is guaranteed by Hahn-Banach theorem and we define $[x, y] = f_y(x)$ and $f_{\lambda x} = \lambda^* f_x$ which satisfy the four conditions above, for each $\lambda \in \mathbb{C}$, $x \in X$. An operator $T \in B(X)$ is called hermitian if $||e^{iT}|| = 1$ for all real numbers t or equivalently, Bonsall[6] if $W(T) = \{[T x, x] : ||x|| = 1\}$ is a subset of real numbers.

An operator $T \in B(X)$ is called positive if T is hermitian and the spectrum of T is in the subset $\{x \in R : x > 0\}.$

Now the definition of the class S_Q can be as follows.

Definition 3.2. An operator T 2 S_Q if and only if

1. $\delta(\mathbf{T}) \subset \mathbf{U}$

2. For any $x \in X$, and |z| < 1 Re[$(I + \sum Q^{\frac{1}{2}}T^n Q^{\frac{1}{2}}z^n)x,x$] ≥ 0 where Q is a hermitian operator such that $Q^{1/2}$ is also a hermitian operator. The following results give indications about the possible existence of Schwarz norms.

Theorem 3.3. There exists a Banach spaceX and an operator T such that $Re[T x,x] \ge 0$ does not imply $Re[T^{-1} x, x] \ge 0$.

As an example to illustrate this, we consider the Banach space ℓ^{p_2} of all pairs $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2)$ with the norm $\mathbf{x} \mapsto \left\| \mathbf{x} \right\|_p = \{ \left\| \mathbf{x}_1 \right\|_p^p + \left\| \mathbf{x}_2 \right\|_p^p \}^{\frac{1}{p}} \ 1$

In this case it can be seen that the semi-inner product compatible with the norm $[x, x] = ||x||^2_p$ is given by $[x, y] = x_1 |y_1|^{p-1} + x_2 |y_2|^{p-2}$ where $x = (x_1, x_2)$ and $y = (y_1, y_2)$ We consider an operator on this space with the matrix

 $\begin{bmatrix} a & 0 \\ c & b \end{bmatrix}$ where the elements a; b; c are complex numbers. We need to find conditions for the a, b ,c such that Re[T x, x] $\geq 0.A$ straight forward but complicated computation shows that these are :

- 1. Rea ≥ 0 , Reb ≥ 0
- 2. $|c| \le (pRea)^{1/p} (qReb)^{1/q} (1/p + 1/q = 1)$ and condition for $Re[T^{-1}x,x] \ge 0$ is

 $\left|\frac{c}{ab}\right| \ge (p\text{Rea}^{-1})^{1/p}(q\text{Reb}^{-1})^{1/q}$ and thus if $|c| \le |a|^{1-2/p}(\text{Repa})^{1/p}(\text{Reqb})^{1/q}$ and this gives that

 $Re[Tx, x] \ge 0.$

Remark 3.4. In case of Hilbert space (and invertible) operators, the condition , $ReT \ge 0$ implies the condition $ReT^{-1} \ge 0$

We now give an example of a Banach space with the property that the induced norm on B(X) is not a Schwarz norm.

Example 3.5 If $X = \ell^{1}{}_{2}$ then the induced norm on B(X) is not a Schwarz norm. We consider the operator T with the matrix(triangular) $\begin{bmatrix} a & 0 \\ c & b \end{bmatrix}$ and a simple computation shows that $\|T\| = \max\{|a| + |c|, |b|\}$. We now take 0<a<1 and in this case the operator with the matrix $\begin{bmatrix} a & 0 \\ 1-a & 1 \end{bmatrix}$ is a contraction operator. An elementary computation shows that |a|<1, the conformal map/function $\Re \alpha(z) = (z - \alpha)(1 - \overline{\alpha} z)^{-1}$ for all $z \in \mathbb{C}$, take contractions; now consider the function $f\alpha(T) = (1 - \overline{\alpha} T)^{-1}(T - \alpha 1)$. The computation of the norm of the operator $f\alpha(T)$ shows that this is given by $\|f\alpha(T)\| = a|\alpha + a + (1 - a)| \frac{1 + \alpha + 1 + \overline{\alpha}}{(1 + \overline{\alpha a})(1 + \alpha)}|$ and thus for $\|f\alpha(T)\| \le 1$, where α is a real number, we obtain $a|\alpha + \alpha| + (1 - a)(1 + a) \le 11 + \alpha a$ which is not $\alpha = -1/2(a+1)$. In

 α is a real number, we obtain $a|\alpha + a| + (1-a)(1 + a) \le |1 + \alpha a|$ which is not $\alpha = -1/2(a+1)$. In view of the results is of interest.

Proposition 3.6 If X is a complex Banach space and for any contraction T, f(T) is also a contraction for all $|f| \le 1$, then X is a Hilbert space.

Proof:

Let $x_0 \in X$ be arbitrary $x_0 \in X$ such that $||x_0|| ||x_0^*|| \le 1$ and define the operator on X by the relation $T_x = x_0^*(x)x_0$. Its clear that T is a contraction. From the hypothesis it follows that $||x_0^*(x)x_0 + x \le ||x + \alpha^* x^*(x)x_0||$. Now if $x, y \in X$ and $||x|| \ge ||y|| \ge 0$, we obtain from the H-Banach theorem that there exists $x_0^* \in X^*$ such that $||x_0^*|| = ||x||^{-1}$, $x_0^*(x) = 1$.

We take $x_0 = y$ and remark that the operator T constructed with these element gives us $\|\|y+\alpha x\| \le \|x+\alpha^*y\| < 1$ and from the continuity argument, it follows that this relation holds for $|\alpha^*| =$

1. Now if ||x|| = ||y|, changing the role of x with y and α with α^* , we obtain $|| \le ||x| + \alpha^* y|| \ge ||y + \alpha x||$, thus we have the equality $||x + \alpha^* y|| = ||y + \alpha x||$. Now if $|\alpha| > 1$, then for $\beta = \frac{1}{\alpha}$ we have by the above result $||x + \alpha^* y|| = ||\alpha| ||\beta x + y| = ||\alpha| ||x + \beta y|| = ||\alpha x + y||$ and thus the relation is true for any α Now for $\alpha = p/q$, p and q being real numbers we obtain that p/q,

p and q being real numbers we obtain that ||px +qy|| = |q| ||p/qt+x|| = |q| ||p/qt+x|| = |q| ||y + p/qx|| = ||qy+px|| and thus for any x and y, ||x|| = ||y|| and any p,q real numbers we obtain that ||px + qy|| = ||qx + py|| and by a famous result of F.A.Ficken,this relation is characteristic for a norm to be inner product norm, i.e, there exists an inner product $\langle . \rangle$ on X such that for all $x \in X$, $||X||^2 = \langle x, x \rangle$

4 Conclusion

A Schwarz norm can be constructed from the sum of a norm and a seminorm and that Schwarz norms are easily realizable in the Hilbert space context.

References

[1] J.P Williams, (1968), Schwarz norms for operators, Paci c Journal of Mathematics. 24, No.1

- IJRD
 - [2] C.A Berger and Stamp i,(1967), Mapping theorems for the numerical range, to appear in American J. Math. 26, 247-250.
 - [3] B.S.Z Nagy and C.Foias,(1983), On certain classes of power-bounded operators, Acta.Sci. Math. Ser. III 18(38) 317-320.
 - [4] C.Foias,(1957), Sur certainstheoremes de von Neumann concernant les ensemplesspectraux , Acta.Math.Sci.(Szeged) 85 15-20.
 - [5] J.G Stamp i,(1966),Normality and the numerical range of an opera-tor,BullAmer.Math.Soc..72 1021-23.
 - [6] F.F. Bonsall, J. Duncan, Numerical Ranges of operators on Normed spaces and elements of Normed algebras, London Math. Soc. Lecture Notes series 2, Cambridge University Press, London-New York, 1971.
 - [7] F.F. Bonsall, J. Duncan, Numerical Ranges II, London Math. Soc. Lec-ture notes Series 10, Cambridge University Press, London-New York, 1973.
 - [8] E.Kreyszig, Introduction to functional analysis with applications, Uni-versity of Windsor,1978.
 - [9] J.A.R Holbrook, Inequalities of von Neumann type for small matrices, Function Spaces(ed.K.Jarosz), Marcel Dekker, 1992, 273-280
 - [10] T.Ando Construction of Schwarz norms,OperatorTheory.Advances and Application.,127(2001) 29-39
 - [11] J.VonNeumann,EineSpektraltheorie fur allgemeineOperatoreneinesUnitarenRaumes,Math.Nach., 4 (1951),258-281
 - [12] C.A Berger, A strange dilation theorem (Ab-stract), Amer. Math. Soc. Notice, 12 (1965) 590