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                                                            ABSTRACT  
The 𝑛𝑡ℎ triangular number denoted by 𝑇𝑛 is defined as the sum of the first 𝑛  consecutive positive 

integers,  and a positive integer 𝑛 is a triangular number if and only if  𝑇𝑛 =
𝑛 (𝑛+1)

2
 . In this paper w e 

represent a triangular number by a quadratic function i.e., for each  𝑚 ∈ ℤ  the necessary and sufficient 

condition for a quadratic function  𝑓(𝑥) =𝑥2 + 𝑥−2𝑚  to be triangular is proved. We also prove,  a 
theorem associated to a rational root 𝑑 of a quadratic function 𝑓(𝑥 ) to be a triangular number 𝑇𝑛. We 
also use Generating function to represent the sets of Quotients of triangular numbers. 
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INTRODUCTION 
        A triangular number 𝑇𝑛  is a number of the form 𝑇 𝑛  = 1 +2 + 3+  ··· +𝑛, where n  is a natural 

number.   For instance, the first few triangular numbers are 1, 3, 6 , 10, 15, 21, 28, 36,45 [1, 2,3 ]. A well-

known  fact about triangular numbers is that 𝑦  is a triangular number if and only if  (8𝑦 + 1) is a perfect 
square. Triangular numbers can be thought of as the numbers of dots that can be arranged in the shape 

of a triangle. Another interesting aspect of the triangular numbers is that they are in consecutive pairs of 

alternating odd and even integers. The table of triangular numbers (pages 6 and 7)  illustrates this fact. 
 

Lemma 0.0.1:  A positive integer  𝑘   is called Triangular if and only if there exists a positive integer   𝑛   

such that  𝒌 = ∑ 𝒊 = 
𝒏 (𝒏+𝟏)

𝟐

𝒏
𝒊 =𝟏 = 𝑻𝒏   [1, 4, 5,6] . 

 

Example 0.0.2   Prove that  25𝑘 +  3  is triangular if 𝑘  is triangular. 

 

Proof:  We show that 25𝑘+ 3 =
𝑥(𝑥+1 )

2
 f  or some   𝑥 ≥  1.  Suppose   𝑘  is triangular. By ( 𝐿𝑒𝑚𝑚𝑎 0 . 0.1),  

for some 𝑛 ≥  1,  𝑘 =
 𝑛(𝑛 +1)

2
.   Hence, 25𝑘 +  3  = 25(

𝑛(𝑛 +1)

2
)+ 3  =  

( 25 𝑛2+25𝑛+6)

2
=  

( 5𝑛+2) (5 𝑛+3 )

2
.    

Set   𝑥 = 5𝑛 + 2. Then 5𝑛 + 3 =  𝑥 + 1   and    25𝑘 + 3 = 
(5𝑛 +2)(5𝑛+3)

2
 = 

𝑥(𝑥+1 )

2
 .   Therefore 

 25𝑘 +  3  is triangular.           ∎  
 

Theorem 0.0.3    A positive integer m is a triangular number if and only if an odd root d of a quadratic 

function f (x) =  x2 +  x −  2m   divides m.  
 

Proof: (⇒ ) Suppose a positive integer 𝑚 is triangular and  𝑑   is an odd  root of 𝑓(𝑥). We show that  𝑑|𝑚 . 

There exists  𝑛 ∈ ℤ+  such that 𝑚 =
𝑛(𝑛+1)

2
 (Lemma 0.0.1). This implies 𝑓(𝑥 ) = 𝑥2 +𝑥 − 2  =𝑥2+𝑥 −

2
𝑛(𝑛+1)

2
 = 𝑥2 + 𝑥− 𝑛(𝑛 + 1). Because 𝑑  is a root of 𝑓(𝑥) we have 𝑓(𝑑 ) = 𝑑 2 + 𝑑 − 𝑛(𝑛 + 1) = 0 .  
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Using quadratic formula, we have     𝑑 =
−1±√12−4(1)(𝑛(𝑛+1))

2
    =  

−1±√1+4𝑛2+4𝑛

2
 

      = 
−1±√(2𝑛+1)2

2
  =   

−1±|2𝑛+1|

2
 , 

 

    This implies    𝑑 =
−1+(2𝑛+1)

2
 , or    𝑑 =

−1−(2𝑛+1)

2
  that is, 𝑑 = 𝑛   or   𝑑 = −(𝑛 + 1). 

    We consider two cases. First 𝑚 =
𝑛(𝑛+1)

2
 when 𝑛 is even i.e., 𝑛 = 2𝑘 for some 𝑘 ∈ ℤ+. This implies  

   𝑚 =
2𝑘(2𝑘+1)

2
= 𝑘(2𝑘 + 1) , and then  𝑑 = −(𝑛 + 1) = −(2𝑘 + 1)|𝑚. Second when n is odd           

    i.e.,  𝑛 = 2𝑘 + 1 for some 𝑘 ∈ ℤ+.  We have 𝑚 =
(2𝑘+1)(2𝑘+2)

2
= (2𝑘 + 1)(𝑘 + 1) and  

     𝑑 = 𝑛 = (2𝑘 + 1)|𝑚. 
 
 (⇐) Suppose an odd root 𝑑 of 𝑓(𝑥) = 𝑥2 + 𝑥 − 2𝑚   divides  𝑚. We show that 𝑚 is triangular. As 𝑑 is a 
root of 𝑓(𝑥) = 𝑥2 + 𝑥 − 2𝑚 it  follows 𝑓(𝑑) = 𝑑2 + 𝑑 − 2𝑚 = 0 , and 𝑑 divides 𝑚 implies  𝑚 = 𝑑𝑐 for 
some  𝑐 ∈ ℤ+. Combining the former and later we have   

𝑓(𝑑) = 𝑑2 + 𝑑 − 2(𝑑𝑐) = 0. 
Therefore, 𝑑2 + 𝑑 − 2(𝑑𝑐) = 𝑑(𝑑 + 1 − 2𝑐) = 0, and either 𝑑 = 0 or (𝑑 + 1 − 2𝑐) = 0.  As 𝑑 divides 

 𝑚, 𝑑 ≠ 0. This implies that (𝑑 + 1 − 2𝑐) = 0, and  2𝑐 = 𝑑 + 1, and 𝑐 =
𝑑+1

2
.  Thus,  𝑚 = 𝑑𝑐 =

𝑑(𝑑+1)

2
  

and hence 𝑚 is triangular.                                   ∎ 
 

 

Theorem 0.0.4   All roots of a quadratic function 𝑓 (𝑥)  =  𝑥2  +  𝑥 −  2𝑚   are rational if and only if        
  𝑚 is triangular. 
 
Proof.       (⇒) Suppose a quadratic function 𝑓 (𝑥)  =  𝑥2  +  𝑥 −  2𝑚   has rational root 𝑑 . Then the 

root   𝑑 =
−1±√1+8𝑚

2
  is rational. This implies the discriminant 𝐷 = (1 +  8𝑚) must be a perfect square.  

If (1 +  8𝑚) is a perfect square, then there exists an integer 𝑝 such that 𝑝2  = 1 + 8𝑚.  But 1 + 8𝑚 =
1 + 2(4𝑚) = 1 + 2𝑡 for some 𝑡 = 4𝑚 ∈ ℤ+ and is an odd integer. Consequently   𝑝2  is odd  
and  𝑝  is odd too. This implies there is  𝑎 ∈ ℤ+ such that 𝑝 = 2𝑎 + 1 and (2𝑎 + 1) 2 =  1 + 8𝑚.  Hence 
4𝑎2 + 4𝑎 + 1 =  1 + 8𝑚 and 4𝑎2 + 4𝑎 = 8𝑚.  Consequently, 4𝑎(𝑎 +  1)  =  8𝑚 and then    

 𝑚 =
𝑎(𝑎+1)

2
.  Therefore 𝑚 is a triangular number. 

 

      Suppose 𝑚 is a triangular number and a quadratic function 𝑓 (𝑥)  =  𝑥2  +  𝑥 −  2𝑚 has a real root. 

Then we show that it is not an irrational number. The quadratic function 𝑓 (𝑥) =  𝑥2  +  𝑥 –  𝑡(𝑡 + 1) 

where   𝑚 =
𝑡(𝑡+1)

2
  is triangular implies 𝑓 (𝑥) =  𝑥2  +  𝑥 –  𝑡(𝑡 + 1) = (𝑥 − 𝑡)(𝑥 + 𝑡 + 1) = 0   has a 

root  𝑥  where either 𝑥 = 𝑡   or  𝑥 = −(𝑡 + 1)  which is a rational number.                                     ∎                         

 

Corollary 0.0.5   If a quadratic function 𝑓 (𝑥)  =  𝑥2  +  𝑥 −  2𝑚 has a root 𝑡, then   𝑚 =
𝑡(𝑡+1)

2
 . 

 

Proof:    Suppose a quadratic function 𝑓 (𝑥) = 𝑥2  +  𝑥 –  2𝑚   has a root 𝑡. The   𝑓(𝑡) =  𝑡2  + 𝑡 − 2 

  𝑚 = 0. This implies 𝑡2 + 𝑡 =  2𝑚   and   𝑡(𝑡 + 1) =  2𝑚, consequently   𝑚 =
𝑡(𝑡+1)

2
.             ∎ 
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Example 0.0.6 Consider the quadratic function 𝑓 (𝑥)  =  𝑥2  +  𝑥 –  30.  Then   𝑓(𝑥)  =  (𝑥 + 6)(𝑥 −
5)  =  0 implies the roots of  𝑓(𝑥) are 𝑑 =  −6  or  𝑑 =  5.   
 

Consequently,   𝑚 =   
𝑑(𝑑+1) 

2
=  

5(5+1)

2
 =  

−6(−6+1)

2
= 15 = 𝑇5   is a triangular number. 

Theorem 0.0.7   Let  𝑓𝑖(𝑥) = 𝑥2 + 𝑥 − 2𝑇𝑖  and   𝑃(𝑥) = ∏ 𝑓𝑖
𝑛
𝑖=1 (𝑥)  where 𝑇𝑖  and 𝑅𝑖 are triangular 

numbers and roots to  𝑓𝑖(𝑥) respectively for each  𝑖 ≥ 1.  Then  
             1)  𝑑𝑒𝑔 𝑃(𝑥) = 2𝑛 ,  and  

             2)   ∏ 𝑅𝑖
2𝑛
𝑖=1   =  (−1)𝑛2𝑛 ∏ 𝑇𝑖

𝑛
𝑖=1  

 

Proof:   1) Given 𝑓𝑖(𝑥) = 𝑥2 + 𝑥 − 2𝑇𝑖  where   𝑇𝑖 =
𝑖(𝑖+1)

2
  . Then  𝑑𝑒𝑔 𝑓𝑖(𝑥) = 2 for each  𝑖 ≥ 1.  

For nonzero polynomial functions 𝑓(𝑥),  ℎ(𝑥), and 𝑔(𝑥) such that  𝑓(𝑥) = ℎ(𝑥)𝑔(𝑥),                      
                                 𝑑𝑒𝑔 𝑓(𝑥) = 𝑑𝑒𝑔 ℎ(𝑥) + 𝑑𝑒𝑔 𝑔(𝑥). 

  Hence  𝑑𝑒𝑔(𝑃(𝑥)) = 𝑑𝑒𝑔 (∏ 𝑓𝑖
𝑛
𝑖=1 (𝑥)) = ∑ 𝑑𝑒𝑔 𝑓𝑖

𝑛
𝑖=1 (𝑥) =  ∑ 2 = 2𝑛𝑛

𝑖=1  . 

 
Consider 𝑓𝑖(𝑥) = 𝑥2 + 𝑥 − 2𝑇𝑖 = 𝑥2 + 𝑥 − 𝑖(𝑖 + 1) = (𝑥 + (𝑖 + 1))(𝑥 − 𝑖). This implies 𝑓𝑖(𝑥) = 0  

 if and only if  (𝑥 + (𝑖 + 1))(𝑥 − 𝑖) = 0  if and only if  𝑥 = 𝑖   or   𝑥 = −(𝑖 + 1).  Set 𝑅𝑖 = 𝑖  or  𝑅𝑖 =

−(𝑖 + 1).  Each quadratic polynomial function 𝑓𝑖(𝑥) has two distinct roots. This implies the product of all 
roots of the polynomial  𝑃(𝑥), 
 

        ∏ 𝑅𝑖
2𝑛
𝑖=1 = ∏ −(𝑖 + 1)(𝑖)𝑛

𝑖=1  =  ∏ −(𝑖 + 1)𝑛
𝑖=1  ∏ 𝑖𝑛

𝑖=1   = (−1)𝑛(𝑛 + 1)! (𝑛)! .                               (⊛) 
 

But  ∏ 𝑇𝑖
𝑛
𝑖=1  = ∏

𝑖(𝑖+1)

2

𝑛
𝑖=1   =  

1

2𝑛
∏ 𝑖(𝑖 + 1)𝑛

𝑖=1  = 
1

2𝑛
(𝑛!)(𝑛 + 1)! . This implies 

                         2𝑛 ∏ 𝑇𝑖
𝑛
𝑖=1 =  𝑛! (𝑛 + 1)!           (⊛⊛)  

Combing (⊛)  and  (⊛⊛)   we have    ∏ 𝑅𝑖
2𝑛
𝑖=1  =  (−1)𝑛2𝑛 ∏ 𝑇𝑖

𝑛
𝑖=1  .                                                            ∎ 

 
Define a sequence,  
           

           ● {𝑎𝑖}𝑖=1
∞ = {

1

3
,

1

2
,

3

5
,

2

3
,

5

7
, … } = {

𝑇𝑖

𝑇𝑖+1
}

𝑖=1

∞

=   {𝑏𝑖}𝑖=1
∞ ∪   {𝑐𝑖}𝑖=1

∞     where 

           

           ●  {𝑏𝑖 }𝑖=1
∞  = {

1

3
,

3

5
,

5

7
,

7

9
… } = {

2𝑖−1

2𝑖+1
}

𝑖=1

∞

  = {
𝑇2𝑖−1

𝑇2𝑖
}

𝑖=1

∞

  =    {
𝑓𝑖

𝑔𝑖
}

𝑖=1

∞

  and 

 

           ●  {𝑐𝑖 }𝑖=1
∞  = {

1

2
,

2

3
,

3

4
,

4

5
,

5

6
, … }  =   {

𝑇2𝑖

𝑇2𝑖+1
}

𝑖=1

∞

=   {
ℎ𝑖

𝑙𝑖
}

𝑖=1

∞

  and   𝑔𝑐𝑑(𝑓𝑖 , 𝑔 𝑖)  = 𝑔𝑐𝑑(ℎ𝑖  , 𝑙 𝑖) =  1 , [7] 

                   
Set: 
                            a) {𝑑𝑖 }𝑖=1

∞  = {1 , 1 , 3 , 2 , 5 , 3 , 7 , 4, … } = ⋃ {∞
𝑖=1 2𝑖 − 1, 𝑖 }     and   

 
                             b) 𝑅𝑖 =  {𝑖(2𝑖 − 1), 𝑖(2𝑖 + 1): 𝑖 ≥ 1 } 
 

                             c)  For each 𝑖 ≥ 0,  {
𝑠2𝑖 = 2𝑖 + 1                 
𝑠2𝑖+1 = 𝑖 + 1               
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 Theorem 0.0.8      Define for each 𝑖 ≥ 0, 
. 

                                             {
𝑠2𝑖 = 2𝑖 + 1, (∗)            

𝑠2𝑖+1 =   𝑖 + 1, (∗∗)       
 

 
                 Then   𝑇𝑖 = 𝑆𝑖−1 ∗ 𝑆𝑖   is a triangular number for each  𝑖 ≥ 1.       
Proof: 
 

          Case 1: We first considered the case when 𝑖  is even, i.e., 𝑖 = 2𝑘. 
 
                      Then      𝑇2𝑘 = 𝑇𝑖 = 𝑆𝑖−1 ∗ 𝑆𝑖 
 
                                           = 𝑆2𝑘−1 ∗ 𝑆2𝑘   =  𝑆2(𝑘−1)+1 ∗ 𝑆2𝑘, because 2𝑘 − 1 = 2(𝑘 − 1) + 1 

 
                                            = ((𝑘 − 1) + 1)  ∗ (2𝑘 + 1)  by (∗) and   (∗∗) 
                   

                                            =  𝑘 ∗ (2𝑘 + 1) = 
2𝑘∗(2𝑘+1)

2
   = 

𝑖 ∗(𝑖+1)

2
 

 

      Therefore,  𝑻𝒊 =  
𝒊 ∗(𝒊+𝟏)

𝟐
, and by (Theorem 0.0.1)  𝑇𝑖 = 𝑆𝑖−1 ∗ 𝑆𝑖    is a triangular number. 

 
        Case 2: Now we considered the case when 𝑖 is odd, i.e., 𝑖 = 2𝑘 + 1.  
 
        This implies that      𝑛2𝑘+1 = 𝑇𝑖 = 𝑆𝑖−1 ∗ 𝑆𝑖 
                                        
                                                      = 𝑆2𝑘+1−1 ∗ 𝑆2𝑘+1 
                    
                                                      = 𝑆2𝑘 ∗ 𝑆2𝑘+1 ,  = (2𝑘 + 1)  ∗ (𝑘 + 1)  by (∗) and (∗∗) 
          

                                                      =  
(2𝑘+1)∗(2𝑘+1+1)

2
    = 

𝑖∗(𝑖+1)

2
,                

  

           Therefore, 𝑇𝑖= 
𝑖 ∗(𝑖+1)

2
, and by (Theorem 0.0.1), 𝑇𝑖 = 𝑆𝑖−1 ∗ 𝑆𝑖   is a triangular number.         ∎ 

 
           Corollary 0.0.9 [8] [A105658] off set {0} 
 
                  The   set   𝐹 = ⋃ {∞

𝑖=1 2𝑖 − 1, 𝑖 }  is the set of integers that satisfies the statement of    
            (Theorem 0.0.10).   
                                  𝐹 = {1,1,3,2,5,3,7,4,9, . . . } 
 
   Theorem 0.0.10   Set  𝑅𝑖 =  {ℎ𝑖𝑓𝑖 = 𝑖(2𝑖 − 1) ,  ℎ𝑖𝑔𝑖 =  𝑖(2𝑖 + 1): 𝑖 ≥ 1 }. 

       Then                                 ⋃ 𝑅𝑖
𝑛
𝑖=1 = ⋃ 𝑇𝑖

2𝑛
𝑖=1                                                                            (⨀⨀) 
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   Proof:  Denote 𝜂𝑖 = ℎ𝑖𝑓𝑖 = 𝑖(2𝑖 − 1) and  𝜇𝑖 = ℎ𝑖𝑔𝑖 = 𝑖(2𝑖 + 1)  for each  𝑖 ≥ 1.  Then              
                                              𝑅𝑖 = {𝜂𝑖, 𝜇𝑖|𝑖 ≥ 1} .      
 
           We set  𝐹𝑛 = ⋃ 𝜂𝑖

𝑛
𝑖=1    and   𝐺𝑛 = ⋃ 𝜇𝑖

𝑛
𝑖=1  . This implies ⋃ 𝑅𝑖

𝑛
𝑖=1   =  𝐹𝑛 ∪ 𝐺𝑛 . 

                                     = ⋃ 𝜂𝑖
𝑛
𝑖=1  ∪  ⋃ 𝜇𝑖

𝑛
𝑖=1 . 

          But       𝜂𝑖 = 𝑖(2𝑖 − 1) =
(2𝑖−1)(2𝑖)

2
= 𝑇2𝑖−1 , 𝑖 ≥ 1 and   

                        𝜇𝑖 = 𝑖(2𝑖 + 1) =
(2𝑖)(2𝑖+1)

2
= 𝑇2𝑖 , 𝑖 ≥ 1,                                                                    (⨀⨀⨀) 

  are triangular numbers [7]. We use induction to prove the statement. We verify it is true for 𝑛 = 1.        
 
 

 The left side of   (⨀⨀ ),  𝑅1 = 𝐹1 ∪ 𝐺1 =  𝜂1  ∪  𝜇1 = {𝑇1 , 𝑇2} = ⋃ 𝑅𝑖
1
𝑖=1   and the right side  ⋃ 𝑇𝑖

2
𝑖=1 ,        

are equal.  Hence true for 𝑛 = 1.  Let 𝑘 ∈ ℤ+ and suppose the statement in (⨀⨀) is true for 𝑛 = 𝑘 that 
is       

                                                 ⋃ 𝑅𝑖
𝑘
𝑖=1 = ⋃ 𝑇𝑖

2𝑘
𝑖=1 . 

 
 Now we show that it is true for    𝑘 = 𝑛 + 1. Thus  

                    ⋃ 𝑅𝑖
𝑘+1
𝑖=1 = ⋃ 𝑅𝑖 

𝑘
𝑖=1 ∪ {𝑅𝑘+1} =  ⋃ 𝑇𝑖

2𝑘
𝑖=1  ∪ {𝑅𝑘+1} = ⋃ 𝑇𝑖

2𝑘
𝑖=1 ∪ {𝜂𝑘+1,   𝜇𝑘+1} . 

    From(⨀⨀⨀)   𝜂𝑘+1 =  𝑇2(𝑘+1)−1 = 𝑇2𝑘+1     and   𝜇𝑘+1 =  𝑇2(𝑘+1) =  𝑇2𝑘+2 .  This implies  

    ⋃ 𝑇𝑖
2𝑘
𝑖=1 ∪  {𝜂𝑘+1,   𝜇𝑘+1} = ⋃ 𝑇𝑖

2𝑘
𝑖=1 ∪ {𝑇2𝑘+1 , 𝑇2𝑘+2 }  =  ⋃ 𝑇𝑖

2(𝑘+1)
𝑖=1    and        ⋃ 𝑅𝑖

𝑘+1
𝑖=1  = ⋃ 𝑇𝑖

2(𝑘+1)
𝑖=1  . This 

implies the statement is true for   𝑘 = 𝑛 + 1.  
      Hence the statement in  (⨀⨀ ) is true   ∀ 𝑘 ≥ 1.        ∎ 
 
Definition 0.0.11  
A finite or infinite expression of the form 
 
 

                                          𝑎 = 𝑎1   +    
1

𝑎2+ 
1

𝑎3+  
1

𝑎4+...

                            (∗) 

 
where the 𝑎𝑖  are  real numbers with 𝑎1 , 𝑎2 ,  𝑎3  , 𝑎4 , .  .  .   > 0    is called a continued fraction. The 
numbers 𝑎𝑖  are called the partial quotients of the continued fraction.  
 
The continued fraction (∗)   is called simple if partial if the partial quotients  𝑎𝑖 are all integers. It is  
 
called finite if it terminates, i.e., if it is of the form 
 

                                    𝑎 = 𝑎1   +    
1

𝑎2+ 
1

𝑎3+  
1

𝑎4+.…+.𝑎𝑛.

                            (∗∗) 

 
 and infinite otherwise. [9, 10, 11] 
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Notation:  (Bracket notation for continued fractions). The continued fractions (∗) and (∗∗) are denoted 
by   [𝑎1 ;  𝑎2, 𝑎3 , 𝑎4 , .  .  .  ]    and  [𝑎1 ;  𝑎2, 𝑎3 , 𝑎4 , .  .  .  𝑎𝑛] respectively. 
 
Example 0.0.12  
 

                                 𝑎 =  1 +    
1

1 +[1 ;2 ,2,2,2,.  .  .] 
  = 1 + 

1

1+𝑎
 

 
Rearranging, we see 𝑎 must be a solution of  𝑥2 = 2  , but since  𝑎  is a positive    (Indeed 𝑎 > 1), we 

have   𝑎 =  √2  . 
 
Theorem 0.0.13 [12]   
 

I.  Continued fraction,  𝑥   =   
𝑓1

𝑓1+ 
𝑔1

 𝑔1+  
𝑓2

𝑓2    + 
𝑔2

𝑔2  +
𝑔3
.  .  .

    =   
1

𝑒−1
                                                              (∗)   

 
II.   Let 𝑎 = {𝑓1  𝑔1, 𝑓2  ,  𝑔2 , 𝑓3 , 𝑔3 , . . . }    and       𝑏 = { ℎ1 , 𝑙1, ℎ2  ,  𝑙2 ,  ℎ3 , 𝑙3 , . . . } . The two set of  
 

 numbers are generated by, GF, 𝑓(𝑥) =
1

(1−𝑥)( 1−𝑥2)2   and  𝑔(𝑥) =
1+𝑥+ 𝑥3+ 𝑥3

( 1−𝑥2)2    respectively.  

 
 
           Some ODD and EVEN Triangular Numbers with Corresponding Subscripts [13] 
 
 
1                3             6              10                 15               21             28               36               45            55   
                
66             78           91             105               120            136            153            171            190          210            
          
 

 
The table above shows even triangular numbers with their respective T subscripts (see shaded) 
 

             {
𝑡2𝑖−2,       𝑖  𝑖𝑠  𝑒𝑣𝑒𝑛 

𝑎𝑛𝑑
𝑡2𝑖−1,        𝑖   𝑖𝑠  𝑜𝑑𝑑 

                          ⇒                        {
𝑡4𝑘−2, 𝑓𝑜𝑟 𝑖 = 2𝑘  , 𝑘 ∈ ℤ+

𝑎𝑛𝑑
𝑡4𝑘−3, 𝑓𝑜𝑟 𝑖 = 2𝑘 − 1, 𝑘 ∈ ℤ+

 

 
 

 
6 

 
10 

 
28 

 
36 

 
66 

 
78 

 
120 

 
136 

 
190 

 
210 

 
276 

 
300 

 
378 

 
406 

 
2*3 

 
2*5 

 
4*7 

 
4*9 

 
6*11 

 
6*13 

 
8*15 

 
8*17 

 
10*19 

 
10*21 

 
12*23 

 
12*25 

 
13*27 

 
13*29 

 
𝑡3 

 
𝑡4 

 
𝑡7 

 
𝑡8 

 
𝑡11 

 
𝑡12 

 
𝑡15 

 
𝑡16 

 
𝑡19 

 
𝑡20 

 
𝑡23 

 
𝑡24 

 
𝑡27 

 
𝑡28 
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The table above shows odd triangular numbers with their respective T subscripts (see shaded). 
 

  {
𝑡2𝑖  ,       𝑖  𝑖𝑠  𝑒𝑣𝑒𝑛 

𝑎𝑛𝑑
𝑡2𝑖+1,        𝑖   𝑖𝑠  𝑜𝑑𝑑 

                       ⇒                     {
𝑡4𝑘    ,    𝑓𝑜𝑟 𝑖 = 2𝑘  , 𝑘 ∈ ℤ+

𝑎𝑛𝑑
𝑡4𝑘−1 , 𝑓𝑜𝑟 𝑖 = 2𝑘 − 1, 𝑘 ∈ ℤ+

 

 
Theorem 0.0.11:  Any two consecutive even triangular numbers have the form 𝑇4𝑘 and 𝑇4𝑘−1  for each 

 𝑘 ≥ 1, and       ∑ (𝑇4𝑖
2𝑛

𝑖−1 − 𝑇4𝑖−1
2 )  =  64𝑇𝑛

2 .  Likewise any two consecutive odd triangular numbers are   
 
𝑇4𝑘−2 and 𝑇4𝑘−3  for each  𝑘 ≥ 1  and        
 

                                ∑ (𝑇4𝑖−2
2𝑛

𝑖−1 − 𝑇4𝑖−3
2 )  = 8𝑇2𝑛2−1

2  . 

 
Proof:  We prove the statement when 
 

1) the triangular numbers have even parity, 

T4i =  
4i(4i+1)

2
   and  T4i−1 =  

(4i−1)(4i)

2
   by Lemma (0.0.1). This implies,  

 

T4i
2 − T4i−1

2  =  (
4i(4i+1)

2
)

2

− (
4i(4i−1)

2
)

2

=  (
4i

2
)

2
((4i + 1)2 − (4i − 1)2) = 4i2(4i) = (4i)3 

As Tn =
n(n+1)

2
  for each n ≥ 1 and   ∑ i3n

i=1 =  
n2(n+1)2

4
  we have  

 ∑ (T4i
2n

i=1 − T4i−1
2 )  =   ∑ (4i)3n

i=1  = 64 ∑ i3n
i−1      = 64

n2(n+1)2

4
= 64 (

n(n+1)

2
)

2

= 64Tn
2 . 

 
2) the triangular numbers have odd parity, 

      

T4i−2 =  
(4i−2)(4i−1)

2
  and  T4i−3 =  

(4i−3)(4i−2)

2
 , (Lemma 0.0.1) . This implies  

 

T4i−2
2 − T4i−3

2 = (
(4i−2)(4i−1)

2
)

2

− (
(4i−3)(4i−2)

2
)

2

 =  (
(4i−2)

2
)

2
((4i − 1)2 − (4i − 3)2)   

 
                      = (2i − 1)2(16i − 2) = 8(2i − 1)3 . 

      Therefore, 

           ∑ (T4i−2
2n

i−1 − T4i−3
2 ) = ∑ 8(2i − 1)3n

i−1 = 8 ∑ (2i − 1)3n
i−1 . Let 2i − 1 = k. 

          Hence      ∑ (T4i−2
2n

i−1 − T4i−3
2 ) = 8 ∑ k32n−1

k−1   =  8T2n2−1
2  .                                           ⊡ 

      
 

 
1 

 
3 

 
15 

 
21 

 
45 

 
55 

 
91 

 
105 

 
153 

 
171 

 
231 

 
253 

 
325 

 
351 

 
1*1 

 
1*3 

 
3*5 

 
3*7 

 
5*9 

 
5*11 

 
7*13 

 
7*15 

 
9*17 

 
9*19 

 
11*21 

 
11*23 

 
13*25 

 
13*27 

 
𝑡1 

 
𝑡2 

 
𝑡5 

 
𝑡6 

 
𝑡9 

 
𝑡10 

 
𝑡13 

 
𝑡14 

 
𝑡17 

 
𝑡18 

 
𝑡21 

 
𝑡22 

 

 
𝑡25 

 
𝑡26 
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