Triangular Numbers in Quadratic Functions Form, Generating Functions and Continued Fractions

Tilahuin A. Muche ${ }^{a}$, Angelique Phifer ${ }^{\text {b }}$,
$a_{\text {Mathematics Department, Savannah State University, GA, muchet @ savannahstate.edu* }}$
${ }^{b}$ Mathematics Department, Savannah State University, GA, aphifer@student.savannahstate.edu

Abstract

The nth triangular number denoted by T_{n} is defined as the sum of the first n consecutive positive integers, and a positive integer n is a triangular number if and only if $T_{n}=\frac{n(n+1)}{2}$. In this paper we represent a triangular number by a quadratic function i.e., for each $m \in \mathbb{Z}$ the necessary and sufficient condition for a quadratic function $f(x)=x^{2}+x-2 m$ to be triangular is proved. We also prove, a theorem associated to a rational root d of a quadratic function $f(x)$ to be a triangular number T_{n} We also use Generating function to represent the sets of Quotients of triangular numbers

KEYWORDS: Triangular Numbers, Quadratic functions, Sequence s and Factorials

INTRODUCTION

A triangular number T_{n} is a number of the form $T_{n}=1+2+3+\cdots+n$, where n is a natural number. For instance, the first few triangular numbers are $1,3,6,10,15,21,28,36,45$ [1, 2,3]. A well known fact about triangular numbers is that y is a triangular number if and only if $(8 y+1)$ is a perfect square. Triangular numbers can be thought of as the numbers of dots that can be arranged in the shape of a triangle. Another interesting aspect of the triangular numbers is that they are in consecutive pairs of alternating odd and even integers. The table of triangular numbers (pages 6 and 7) illustrates this fact.

Lemma 0.0.1: A positive integer k is called Triangular if and only if there exists a positive integer n such that $\boldsymbol{k}=\sum_{i=1}^{\boldsymbol{n}} \boldsymbol{i}=\frac{\boldsymbol{n}(\boldsymbol{n}+1)}{\mathbf{2}}=\boldsymbol{T}_{\boldsymbol{n}}[1,4,5,6]$.

Example 0.0.2 Prove that $25 k+3$ is triangular if k is triangular.
Proof: We show that $25 k+3=\frac{x(x+1)}{2}$ f or some $x \geq 1$. Suppose k is triangular. By (Lemma 001), for some $n \geq 1, k=\frac{n(n+1)}{2}$. Hence, $25 k+3=25\binom{n(n+1)}{2}+3=\frac{\left(25 n^{2}+25 n+6\right)}{2}=\frac{(5 n+2)(5 n+3)}{2}$.
Set $x=5 n+2$. Then $5 n+3=x+1$ and $25 k+3=\frac{(5 n+2)(5 n+3)}{2}=\frac{x(x+1)}{2}$. Therefore $25 k+3$ is triangular.

Theorem 0.0.3 A positive integer m is a triangular number if and only if an oddrootd of a quadratic function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x} \quad 2 \mathrm{~m}$ divides m

Proof: (\Rightarrow) Suppose a positive integer m is triangular and d is an odd root of $f(x)$. We show that $d \mid m$. There exists $n \in \mathbb{Z}^{+}$such that $m=\frac{n(n+1)}{2}$ (Lemma 0.0.1). This implies $f(x)=x^{2}+x-2=x^{2}+x-$ $2 \frac{n(n+1)}{2}=x^{2}+x \quad n(n+1)$. Because d is a root of $f(x)$ we have $f(d)=d^{2}+d \quad n(n+1)=0$

Using quadratic formula, we have $\quad d=\frac{-1 \pm \sqrt{1^{2}-4(1)(n(n+1))}}{2}=\frac{-1 \pm \sqrt{1+4 n^{2}+4 n}}{2}$

$$
=\frac{-1 \pm \sqrt{(2 n+1)^{2}}}{2}=\frac{-1 \pm|2 n+1|}{2}
$$

This implies $d=\frac{-1+(2 n+1)}{2}$, or $d=\frac{-1-(2 n+1)}{2}$ that is, $d=n$ or $d=-(n+1)$.
We consider two cases. First $m=\frac{n(n+1)}{2}$ when n is even i.e., $n=2 k$ for some $k \in \mathbb{Z}^{+}$. This implies $m=\frac{2 k(2 k+1)}{2}=k(2 k+1)$, and then $d=-(n+1)=-(2 k+1) \mid m$. Second when n is odd i.e., $n=2 k+1$ for some $k \in \mathbb{Z}^{+}$. We have $m=\frac{(2 k+1)(2 k+2)}{2}=(2 k+1)(k+1)$ and $d=n=(2 k+1) \mid m$.
(\Leftrightarrow) Suppose an odd root d of $f(x)=x^{2}+x-2 m$ divides m. We show that m is triangular. As d is a root of $f(x)=x^{2}+x-2 m$ it follows $f(d)=d^{2}+d-2 m=0$, and d divides m implies $m=d c$ for some $c \in \mathbb{Z}^{+}$. Combining the former and later we have

$$
f(d)=d^{2}+d-2(d c)=0
$$

Therefore, $d^{2}+d-2(d c)=d(d+1-2 c)=0$, and either $d=0$ or $(d+1-2 c)=0$. As d divides $m, d \neq 0$. This implies that $(d+1-2 c)=0$, and $2 c=d+1$, and $c=\frac{d+1}{2}$. Thus, $m=d c=\frac{d(d+1)}{2}$ and hence m is triangular.

Theorem 0.0.4 All roots of a quadratic function $f(x)=x^{2}+x-2 m$ are rational if and only if m is triangular.

Proof. $\quad(\Rightarrow)$ Suppose a quadratic function $f(x)=x^{2}+x-2 m$ has rational root d. Then the root $d=\frac{-1 \pm \sqrt{1+8 m}}{2}$ is rational. This implies the discriminant $D=(1+8 m)$ must be a perfect square. If $(1+8 m)$ is a perfect square, then there exists an integer p such that $p^{2}=1+8 m$. But $1+8 m=$ $1+2(4 m)=1+2 t$ for some $t=4 m \in \mathbb{Z}^{+}$and is an odd integer. Consequently p^{2} is odd and p is odd too. This implies there is $a \in \mathbb{Z}^{+}$such that $p=2 a+1$ and $(2 a+1)^{2}=1+8 m$. Hence $4 a^{2}+4 a+1=1+8 m$ and $4 a^{2}+4 a=8 m$. Consequently, $4 a(a+1)=8 m$ and then $m=\frac{a(a+1)}{2}$. Therefore m is a triangular number.

Suppose m is a triangular number and a quadratic function $f(x)=x^{2}+x-2 m$ has a real root. Then we show that it is not an irrational number. The quadratic function $f(x)=x^{2}+x-t(t+1)$ where $m=\frac{t(t+1)}{2}$ is triangular implies $f(x)=x^{2}+x-t(t+1)=(x-t)(x+t+1)=0$ has a root x where either $x=t$ or $x=-(t+1)$ which is a rational number.

Corollary 0.0.5 If a quadratic function $f(x)=x^{2}+x-2 m$ has a root t, then $m=\frac{t(t+1)}{2}$.
Proof: Suppose a quadratic function $f(x)=x^{2}+x-2 m$ has a root t. The $f(t)=t^{2}+t-2$ $m=0$. This implies $t^{2}+t=2 m$ and $t(t+1)=2 m$, consequently $m=\frac{t(t+1)}{2}$.

Example 0.0.6 Consider the quadratic function $f(x)=x^{2}+x-30$. Then $f(x)=(x+6)(x-$ $5)=0$ implies the roots of $f(x)$ are $d=-6$ or $d=5$.

Consequently, $m=\frac{d(d+1)}{2}=\frac{5(5+1)}{2}=\frac{-6(-6+1)}{2}=15=T_{5}$ is a triangular number.
Theorem 0.0.7 Let $f_{i}(x)=x^{2}+x-2 T_{i}$ and $P(x)=\prod_{i=1}^{n} f_{i}(x)$ where T_{i} and R_{i} are triangular numbers and roots to $f_{i}(x)$ respectively for each $i \geq 1$. Then

1) $\operatorname{deg} P(x)=2 n$, and
2) $\prod_{i=1}^{2 n} R_{i}=(-1)^{n} 2^{n} \prod_{i=1}^{n} T_{i}$

Proof: 1) Given $f_{i}(x)=x^{2}+x-2 T_{i}$ where $T_{i}=\frac{i(i+1)}{2}$. Then $\operatorname{deg} f_{i}(x)=2$ for each $i \geq 1$.
For nonzero polynomial functions $f(x), h(x)$, and $g(x)$ such that $f(x)=h(x) g(x)$,

$$
\operatorname{deg} f(x)=\operatorname{deg} h(x)+\operatorname{deg} g(x)
$$

Hence $\operatorname{deg}(P(x))=\operatorname{deg}\left(\prod_{i=1}^{n} f_{i}(x)\right)=\sum_{i=1}^{n} \operatorname{deg} f_{i}(x)=\sum_{i=1}^{n} 2=2 n$.
Consider $f_{i}(x)=x^{2}+x-2 T_{i}=x^{2}+x-i(i+1)=(x+(i+1))(x-i)$. This implies $f_{i}(x)=0$ if and only if $(x+(i+1))(x-i)=0$ if and only if $x=i$ or $x=-(i+1)$. Set $R_{i}=i$ or $R_{i}=$ $-(i+1)$. Each quadratic polynomial function $f_{i}(x)$ has two distinct roots. This implies the product of all roots of the polynomial $P(x)$,

$$
\prod_{i=1}^{2 n} R_{i}=\prod_{i=1}^{n}-(i+1)(i)=\prod_{i=1}^{n}-(i+1) \prod_{i=1}^{n} i=(-1)^{n}(n+1)!(n)!.
$$

But $\prod_{i=1}^{n} T_{i}=\prod_{i=1}^{n} \frac{i(i+1)}{2}=\frac{1}{2^{n}} \prod_{i=1}^{\square} i(i+1)=\frac{1}{2^{n}}(n!)(n+1)!$. This implies

$$
2^{n} \prod_{i=1}^{n} T_{i}=n!(n+1)!
$$

Combing (\circledast) and $(\circledast \circledast)$ we have $\prod_{i=1}^{2 n} R_{i}=(-1)^{n} 2^{n} \prod_{i=1}^{n} T_{i}$.
Define a sequence,

- $\left\{a_{i}\right\}_{i=1}^{\infty}=\left\{\frac{1}{3}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{5}{7}, \ldots\right\}=\left\{\frac{T_{i}}{T_{i+1}}\right\}_{i=1}^{\infty}=\left\{b_{i}\right\}_{i=1}^{\infty} \cup\left\{c_{i}\right\}_{i=1}^{\infty} \quad$ where
- $\left\{b_{i}\right\}_{i=1}^{\infty}=\left\{\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{7}{9} \ldots\right\}=\left\{\frac{2 i-1}{2 i+1}\right\}_{i=1}^{\infty}=\left\{\frac{T_{2 i-1}}{T_{2 i}}\right\}_{i=1}^{\infty}=\left\{\frac{f_{i}}{g_{i}}\right\}_{i=1}^{\infty}$ and
- $\left\{c_{i}\right\}_{i=1}^{\infty}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \ldots\right\}=\left\{\frac{T_{2 i}}{T_{2 i+1}}\right\}_{i=1}^{\infty}=\left\{\frac{h_{i}}{l_{i}}\right\}_{i=1}^{\infty}$ and $\operatorname{gcd}\left(f_{i}, g_{i}\right)=\operatorname{gcd}\left(h_{i}, l_{i}\right)=1$, [7]

Set:

$$
\begin{aligned}
& \text { a) }\left\{d_{i}\right\}_{i=1}^{\infty}=\{1,1,3,2,5,3,7,4, \ldots\}=\bigcup_{i=1}^{\infty}\{2 i-1, i\} \quad \text { and } \\
& \text { b) } R_{i}=\{i(2 i-1), i(2 i+1): i \geq 1\} \\
& \text { c) For each } i \geq 0, \quad\left\{\begin{array}{l}
s_{2 i}=2 i+1 \\
s_{2 i+1}=i+1
\end{array}\right.
\end{aligned}
$$

Theorem 0.0.8 Define for each $i \geq 0$,

$$
\left\{\begin{array}{l}
s_{2 i}=2 i+1,(*) \\
s_{2 i+1}=i+1,(* *)
\end{array}\right.
$$

Then $T_{i}=S_{i-1} * S_{i}$ is a triangular number for each $i \geq 1$.

Proof:

Case 1: We first considered the case when i is even, i.e., $i=2 k$.

$$
\text { Then } \begin{aligned}
T_{2 k} & =T_{i}=S_{i-1} * S_{i} \\
& =S_{2 k-1} * S_{2 k}=S_{2(k-1)+1} * S_{2 k}, \text { because } 2 k-1=2(k-1)+1 \\
& =((k-1)+1) *(2 k+1) \quad \text { by }(*) \text { and }(* *) \\
& =k *(2 k+1)=\frac{2 k *(2 k+1)}{2}=\frac{i *(i+1)}{2}
\end{aligned}
$$

Therefore, $\boldsymbol{T}_{\boldsymbol{i}}=\frac{\boldsymbol{i} *(\boldsymbol{i}+\mathbf{1})}{2}$, and by (Theorem 0.0.1) $T_{i}=S_{i-1} * S_{i}$ is a triangular number.
Case 2: Now we considered the case when i is odd, i.e., $i=2 k+1$.
This implies that $\square_{2 k+1}=T_{i}=S_{i-1} * S_{i}$

$$
\begin{aligned}
& =S_{2 k+1-1} * S_{2 k+1} \\
& =S_{2 k} * S_{2 k+1},=(2 k+1) *(k+1) \quad \text { by }(*) \text { and }(* *) \\
& =\frac{(2 k+1) *(2 k+1+1)}{2}=\frac{i *(i+1)}{2},
\end{aligned}
$$

Therefore, $T_{i}=\frac{i *(i+1)}{2}$, and by (Theorem 0.0.1), $T_{i}=S_{i-1} * S_{i}$ is a triangular number.

Corollary 0.0.9 [8] [A105658] off set $\{0\}$

The set $F=\bigcup_{i=1}^{\infty}\{2 i-1, i\}$ is the set of integers that satisfies the statement of (Theorem 0.0.10).

$$
F=\{1,1,3,2,5,3,7,4,9, \ldots\}
$$

Theorem 0.0.10 Set $R_{i}=\left\{h_{i} f_{i}=i(2 i-1), h_{i} g_{i}=i(2 i+1): i \geq 1\right\}$.
Then

$$
\bigcup_{i=1}^{n} R_{i}=\bigcup_{i=1}^{2 \boxtimes} T_{i}
$$

Proof: Denote $\eta_{i}=h_{i} f_{i}=i(2 i-1)$ and $\mu_{i}=h_{i} g_{i}=i(2 i+1)$ for each $i \geq 1$. Then

$$
R_{i}=\left\{\eta_{i}, \mu_{i} \mid i \geq 1\right\}
$$

We set $F_{n}=\bigcup_{i=1}^{n} \eta_{i}$ and $G_{n}=\bigcup_{i=1}^{n} \mu_{i}$. This implies $\bigcup_{i=1}^{n} R_{i}=F_{n} \cup G_{n}$.

$$
=\bigcup_{i=1}^{n} \eta_{i} \cup \bigcup_{i=1}^{n} \mu_{i} .
$$

But $\quad \eta_{i}=i(2 i-1)=\frac{(2 i-1)(2 i)}{2}=T_{2 i-1}, i \geq 1$ and

$$
\mu_{i}=i(2 i+1)=\frac{(2 i)(2 i+1)}{2}=T_{2 i}, i \geq 1
$$

are triangular numbers [7]. We use induction to prove the statement. We verify it is true for $n=1$.

The left side of $(\odot \odot), R_{1}=F_{1} \cup G_{1}=\eta_{1} \cup \mu_{1}=\left\{T_{1}, T_{2}\right\}=\cup_{i=1}^{1} R_{i}$ and the right side $\cup_{i=1}^{2} T_{i}$, are equal. Hence true for $n=1$. Let $k \in \mathbb{Z}^{+}$and suppose the statement in $(\odot \odot)$ is true for $n=k$ that is

$$
\bigcup_{i=1}^{k} R_{i}=\bigcup_{i=1}^{2 k} T_{i} .
$$

Now we show that it is true for $k=n+1$. Thus

$$
\cup_{i=1}^{k+1} R_{i}=\bigcup_{i=1}^{k} R_{i} \cup\left\{R_{k+1}\right\}=\bigcup_{i=1}^{2 k} T_{i} \cup\left\{R_{k+1}\right\}=\bigcup_{i=1}^{2 k} T_{i} \cup\left\{\eta_{k+1}, \mu_{k+1}\right\} .
$$

From $(\odot \odot \odot) \quad \eta_{k+1}=T_{2(k+1)-1}=T_{2 k+1}$ and $\mu_{k+1}=T_{2(k+1)}=T_{2 k+2}$. This implies
$\cup_{i=1}^{2 k} T_{i} \cup\left\{\eta_{k+1}, \mu_{k+1}\right\}=\bigcup_{i=1}^{2 k} T_{i} \cup\left\{T_{2 k+1}, T_{2 k+2}\right\}=\cup_{i=1}^{2(k+1)} T_{i}$ and $\cup_{i=1}^{k+1} R_{i}=\cup_{i=1}^{2(k+1)} T_{i}$. This implies the statement is true for $k=n+1$.

Hence the statement in $(\odot \odot)$ is true $\forall k \geq 1$.

Definition 0.0.11

A finite or infinite expression of the form

$$
\begin{equation*}
a=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4+. .}}}} \tag{*}
\end{equation*}
$$

where the a_{i} are real numbers with $a_{1}, a_{2}, a_{3}, a_{4}, \ldots>0$ is called a continued fraction. The numbers a_{i} are called the partial quotients of the continued fraction.

The continued fraction (*) is called simple if partial if the partial quotients a_{i} are all integers. It is called finite if it terminates, i.e., if it is of the form

$$
\begin{equation*}
a=a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\ldots+a_{n}}}} \tag{**}
\end{equation*}
$$

and infinite otherwise. [9, 10, 11]

Notation: (Bracket notation for continued fractions). The continued fractions (*) and (**) are denoted by $\left[a_{1} ; a_{2}, a_{3}, a_{4}, \ldots\right]$ and $\left[a_{1} ; a_{2}, a_{3}, a_{4}, \ldots a_{n}\right]$ respectively.

Example 0.0.12

$$
a=1+\frac{1}{1+[1 ; 2,2,2,2, \ldots]}=1+\frac{1}{1+a}
$$

Rearranging, we see a must be a solution of $x^{2}=2$, but since a is a positive (Indeed $a>1$), we have $a=\sqrt{2}$.

Theorem 0.0.13 [12]

I. Continued fraction, $x=\frac{f_{1}}{f_{1}+\frac{g_{1}}{g_{1}+\frac{f_{2}}{f_{2}+\frac{g_{2}}{g_{2}+\frac{g_{3}}{2}}}}}=\frac{1}{e-1}$
II. Let $a=\left\{f_{1} g_{1}, f_{2}, g_{2}, f_{3}, g_{3}, \ldots\right\}$ and $b=\left\{h_{1}, l_{1}, h_{2}, l_{2}, h_{3}, l_{3}, \ldots\right\}$. The two set of numbers are generated by, $G F, f(x)=\frac{1}{(1-x)\left(1-x^{2}\right)^{2}}$ and $g(x)=\frac{1+x+x^{3}+x^{3}}{\left(1-x^{2}\right)^{2}}$ respectively.

Some ODD and EVEN Triangular Numbers with Corresponding Subscripts [13]

1
66
3
6
$6 \quad 10$
15
21
28
36
45
55
78
$91 \quad 105$
120
136
153
171
190
210

6	10	28	36	66	78	120	136	190	210	276	300	378	406
$2 * 3$	$2 * 5$	$4 * 7$	$4 * 9$	$6 * 11$	$6 * 13$	$8 * 15$	$8 * 17$	$10 * 19$	$10 * 21$	$12 * 23$	$12 * 25$	$13 * 27$	$13 * 29$
t_{3}	t_{4}	t_{7}	t_{8}	t_{11}	t_{12}	t_{15}	t_{16}	t_{19}	t_{20}	t_{23}	t_{24}	t_{27}	t_{28}

The table above shows even triangular numbers with their respective T subscripts (see shaded)

$$
\left\{\begin{array} { c }
{ t _ { 2 i - 2 } , \quad i \text { is even } } \\
{ \text { and } } \\
{ t _ { 2 i - 1 } , \quad i \text { is odd } }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{c}
t_{4 k-2}, \text { for } i=2 k, k \in \mathbb{Z}^{+} \\
\text {and } \\
t_{4 k-3}, \text { for } i=2 k-1, k \in \mathbb{Z}^{+}
\end{array}\right.\right.
$$

1	3	15	21	45	55	91	105	153	171	231	253	325	351
$1 * 1$	$1 * 3$	$3 * 5$	$3 * 7$	$5 * 9$	$5 * 11$	$7 * 13$	$7 * 15$	$9 * 17$	$9 * 19$	$11 * 21$	$11 * 23$	$13 * 25$	$13 * 27$
t_{1}	t_{2}	t_{5}	t_{6}	t_{9}	t_{10}	t_{13}	t_{14}	t_{17}	t_{18}	t_{21}	t_{22}	t_{25}	t_{26}

The table above shows odd triangular numbers with their respective T subscripts (see shaded).

$$
\left\{\begin{array} { c }
{ t _ { 2 i } , \quad i \text { is even } } \\
{ \text { and } } \\
{ t _ { 2 i + 1 } , \quad i \text { is odd } }
\end{array} \quad \Rightarrow \quad \left\{\begin{array}{c}
t_{4 k}, \text { for } i=2 k, k \in \mathbb{Z}^{+} \\
\text {and } \\
t_{4 k-1}, \text { for } i=2 k-1, k \in \mathbb{Z}^{+}
\end{array}\right.\right.
$$

Theorem 0.0.11: Any two consecutive even triangular numbers have the form $T_{4 k}$ and $T_{4 k-1}$ for each $k \geq 1$, and $\quad \sum_{i-1}^{n}\left(T_{4 i}^{2}-T_{4 i-1}^{2}\right)=64 T_{n}^{2}$. Likewise any two consecutive odd triangular numbers are $T_{4 k-2}$ and $T_{4 k-3}$ for each $k \geq 1$ and

$$
\sum_{i-1}^{n}\left(T_{4 i-2}^{2}-T_{4 i-3}^{2}\right)=8 T_{2 n^{2}-1}^{2}
$$

Proof: We prove the statement when

1) the triangular numbers have even parity,
$\mathrm{T}_{4 \mathrm{i}}=\frac{4 \mathrm{i}(4 \mathrm{i}+1)}{2}$ and $\mathrm{T}_{4 \mathrm{i}-1}=\frac{(4 \mathrm{i}-1)(4 \mathrm{i})}{2}$ by Lemma (0.0.1). This implies,
$\mathrm{T}_{4 \mathrm{i}}^{2}-\mathrm{T}_{4 \mathrm{i}-1}^{2}=\left(\frac{4 \mathrm{i}(4 \mathrm{i}+1)}{2}\right)^{2}-\left(\frac{4 \mathrm{i}(4 \mathrm{i}-1)}{2}\right)^{2}=\left(\frac{4 \mathrm{i}}{2}\right)^{2}\left((4 \mathrm{i}+1)^{2}-(4 \mathrm{i}-1)^{2}\right)=4 \mathrm{i}^{2}(4 \mathrm{i})=(4 \mathrm{i})^{3}$
As $\mathrm{T}_{\mathrm{n}}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}$ for each $\mathrm{n} \geq 1$ and $\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{i}^{3}=\frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}$ we have
$\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{T}_{4 \mathrm{i}}^{2}-\mathrm{T}_{4 \mathrm{i}-1}^{2}\right)=\sum_{\mathrm{i}=1}^{\mathrm{n}}(4 \mathrm{i})^{3}=64 \sum_{\mathrm{i}-1}^{\mathrm{n}} \mathrm{i}^{3}=64 \frac{\mathrm{n}^{2}(\mathrm{n}+1)^{2}}{4}=64\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^{2}=64 \mathrm{~T}_{\mathrm{n}}^{2}$.
2) the triangular numbers have odd parity,

$$
\begin{aligned}
& \mathrm{T}_{4 \mathrm{i}-2}=\frac{(4 \mathrm{i}-2)(4 \mathrm{i}-1)}{2} \text { and } \mathrm{T}_{4 \mathrm{i}-3}=\frac{(4 \mathrm{i}-3)(4 \mathrm{i}-2)}{2} \text {, (Lemma 0.0.1). This implies } \\
& \mathrm{T}_{4 \mathrm{i}-2}^{2}-\mathrm{T}_{4 \mathrm{i}-3}^{2}=\left(\frac{(4 \mathrm{i}-2)(4 \mathrm{i}-1)}{2}\right)^{2}-\left(\frac{(4 \mathrm{i}-3)(4 \mathrm{i}-2)}{2}\right)^{2}=\left(\frac{(4 \mathrm{i}-2)}{2}\right)^{2}\left((4 \mathrm{i}-1)^{2}-(4 \mathrm{i}-3)^{2}\right) \\
& \quad=(2 \mathrm{i}-1)^{2}(16 \mathrm{i}-2)=8(2 \mathrm{i}-1)^{3} .
\end{aligned}
$$

Therefore,

$$
\sum_{\mathrm{i}-1}^{\mathrm{n}}\left(\mathrm{~T}_{4 \mathrm{i}-2}^{2}-\mathrm{T}_{4 \mathrm{i}-3}^{2}\right)=\sum_{\mathrm{i}-1}^{\mathrm{n}} 8(2 \mathrm{i}-1)^{3}=8 \sum_{\mathrm{i}-1}^{\mathrm{n}}(2 \mathrm{i}-1)^{3} . \text { Let } 2 \mathrm{i}-1=\mathrm{k} .
$$

Hence

$$
\sum_{\mathrm{i}-1}^{\mathrm{n}}\left(\mathrm{~T}_{4 \mathrm{i}-2}^{2}-\mathrm{T}_{4 \mathrm{i}-3}^{2}\right)=8 \sum_{\mathrm{k}-1}^{2 \mathrm{n}-1} \mathrm{k}^{3}=8 \mathrm{~T}_{2 \mathrm{n}^{2}-1}^{2}
$$

ACKNOWLEDGEMENTS

The authors thank the Savannah State University Re-Search Council for financial support through the 2016 NSF-Magic-Stem plus Program Research Grant.

REFERENCES

[1] David M.B., (1980), Elementary Number Theory, Ally and Bacon, Inc., ISBN 0-205-06965-7.
[2] The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[3] Moore T.E, (2013), an investigation Relating Square and triangular numbers, Ontario Mathematics Gazette 52(2), 37-40.
[4] Thomas K. (2004), Discrete Mathematics with Application, ISBN 0-12- 421180, Elsevier Academic Press.
[5] Charles V. E. (2001), Elementary Number Theory, ISBN13: 978- 1577664451, McGrawHill Publishing.
[6] Mulatu Lemma, Jonathan Lambright and Brittany Epps, (2015), the Mathematical Beauty of Triangular Numbers, S.T.E.A.M and Education Publication.
[7] Guram, B. and Eachan, L. (2013) Introduction to Set Theory, DOI: 10.4169/loci003991.
[8] A105658, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/.
[9] L. E. Baum and M. M. Sweet, (1976), Continued fractions of algebraic power series in characteristic 2, Ann. of Math. 103, 593-610.
[10] W. Mills and D. P. Robbins, (1986), Continued fractions for certain algebraic power series, J. Number Theory 23, 388-404.
[11] Continued Fractions of Different Quotients, DOI: http://dx.doi.org/10.20431/2347-3142.0511003
[12] A109613, A008619, The On-Line Encyclopedia of Integer Sequences, http://oeis.org/
[13] Tilahun Muche, Agegnehu Atena, (2016), Investigating Triangular Numbers with greatest integer function, Sequences and Double Factorial Asia Pacific Journal of Multidisciplinary Research, Vol. 4, No. 4,

