Abstract: We will investigate which integers can be written as the sum of squares. Different examples are given to supplement each given theorem.

Introduction: We say that a positive integer \(n \) is representable as a sum of two squares if \(n = a^2 + b^2 \) for some integers \(a \) and \(b \). We include 0 as a possible value of \(a \) and \(b \). We also say that a positive integer \(n \) is representable as a sum of \(m \) squares if \(n = a_1^2 + a_2^2 + a_3^2 + \cdots + a_m^2 \) for some integers \(m \) and \(a_i \).

1. The Sum of Two Squares

Theorem 1. An integer \(n \) is the sum of two squares \(\iff \) \(2n \) is the sum of the squares.

Proof (1) \(\Rightarrow \) Assume \(n \) is the sum of two squares. Let \(n = a^2 + b^2 \) for integers \(a \) and \(b \).

Then \(2n = 2(a^2 + b^2) \)
\(\Rightarrow 2n = (a + b)^2 + (a - b)^2 \)
\(\Rightarrow 2n \) is the sum of two squares

(2) \(\Leftarrow \) Assume \(2n = c^2 + d^2 \). Since \(c \) and \(d \) are both even or both odd \(c + d \) and \(c - d \) are even integers.

\[n = \left(\frac{c + d}{2} \right)^2 + \left(\frac{c - d}{2} \right)^2 \]
\(\Rightarrow n \) is the sum of two squares.

The theorem follows by (1) and (2).
Example 1. Let \(n = 29 \) then

\[
\begin{align*}
 n^2 &= 5^2 + 2^2 \\
 2n &= 58 = 7^2 + 3^2
\end{align*}
\]

Theorem 2. If \(n \) a triangular number, prove that even if each of the three consecutive integers \(8n^2, 8n^2 + 1 \), and \(8n^2 + 2 \) can be expressed as a sum of two squares.

Proof

1) \(8n^2 = (2n)^2 + (2n)^2 \), hence sum of two squares

2) \(n \) is a triangular number

\[
\Rightarrow n = \frac{m(m+1)}{2}
\]

\[
\Rightarrow 8n = 4m(m + 1)
\]

\[
\Rightarrow 8n = 4(m)(m + 1) + 1
= 4m^2 + 4m + 1
= (2m + 1)^2
\]

Hence \(8n + 1 \) is a perfect square.

Let \(8n + 1 = k^2 \)

Now observe that

\[
2(8n^2 + 1) = (4n + 1)^2 + (8n + 1)
= (4n + 1)^2 + k^2
\]

\(\Rightarrow \) by Theorem 1, \(8n^2 + 1 \) is a sum of two squares

3) Note that

\[
8n^2 + 2 = (m(m + 1) + 1)^2 + (m(m + 1) - 1)^2
\]

a sum of two squares also.

Theorem 3. If each of the natural numbers \(x \) and \(y \) is a sum of two squares then so is \(xy \).
Proof Let \(x = a^2 + b^2 \) and \(y = c^2 + d^2 \). Then

\[
xy = (a^2 + b^2)(c^2 + d^2) = a^2c^2 + a^2d^2 + b^2c^2 + b^2d^2 = a^2c^2 + 2abcd + b^2d^2 + a^2d^2 - 2abcd + b^2 + c^2 = (ac + bd)^2 + (ad - bc)^2. \]

Thus the theorem is proved.

Remark 1 \(xy \) can also be written as

\[
xy = (ac - bd)^2 + (ad + bc)^2
\]

Example 2.

\[
65 = 5 \cdot 13 \quad \text{Note that}
\]

\[
5 = (2^2 + 1) \quad \text{and} \quad 13 = 3^2 + 2^2
\]

\[
a = 2 \quad b = 1 \quad c = 3 \quad d = 2
\]

So, we have

\[
65 = (6 + 2)^2 + (4 - 3)^2 = 8^2 + 1^2 = (6 - 2)^2 + (4 + 3)^2 = 4^2 + 7^2
\]

We state the following two Theorem without proof and use them.

Theorem 4. If the prime \(P \equiv 1 (mod \ 4) \) then there exist unique integers \(x \) and \(y \) such that \(x > y > 0 \) and \(p = x^2 + y^2 \).

Example 3. Let \(p = 97 \). Then \(P \equiv 1 (mod \ 4) \) and 97 can be expressed as sum of two squares. Note \(97 = 9^2 + 4^2 \).

Theorem 5. Let \(n \) be a positive integer. Then \(n \) can be expressed as the sum of two squares if and only if all prime factors of \(n \) of the form \(4t+3 \) have even exponents in the factorization of \(n \).

Example 4. Take \(n = 162 \). Then \(n = 2^4 \cdot 3^4 \) and 3 is a prime factor of the form \(4t+3 \) with even exponent 4 and hence can be expressed as the sum of two squares. Note that \(162 = 9^2 + 9^2 \).
2. The sum of three squares.

Lemma 1: Every number can be expressed as the sum of 3 triangular numbers.

Theorem 6 Every number of the form $8k + 3$ can be expressed as the sum of three squares.

Proof By Lemma 1, K can be written as the sum of three triangular numbers. That is,

$$K = \frac{a(a + 1)}{2} + \frac{b(b + 1)}{2} + \frac{c(c + 1)}{2}$$

$$\Rightarrow 8K + 3 = 4a(a + 1) + 4b(b + 1) + 4c(c + 1)$$

$$\Rightarrow 8K + 3 = 4a^2 + 4a + 4b^2 + 4b + 4c^2 + 4c + 1$$

$$= (2a + 1)^2 + (2b + 1)^2 + (2c + 1)^2$$

Hence the theorem is proved

Remark 2: A number can be expressed as the sum of three squares in only one way.

We state the following important theorem without proof and use it.

A natural number can be represented as the sum of three squares of integers.

$$n = a^2 + b^2 + c^2 \iff n \text{ is of the form}$$

$$n = 4^m(8k + 7) \text{ for integers } m \text{ and } k$$

Example 5 List five integers that can be expressed as the sum of three square integers using $n = 8k + 3$

$$k = 0 \Rightarrow n = 3 = 1^2 + 1^2 + 1^2$$

$$k = 1 \Rightarrow n = 11 = 3^2 + 1^2 + 1^2$$

$$k = 2 \Rightarrow n = 19 = 2^2 + 3^2 + 1^2$$

$$k = 3 \Rightarrow n = 27 = 3^2 + 3^2 + 3^2$$
\[k = 4 \Rightarrow n = 35 = 5^2 + 3^2 + 1^2 \]

Theorem 7 Let \(n \) be a positive integer. Then \(n \) can be expressed as the sum of three squares if and only if \(n \) is not of the form \(4^k \ (8t + 7) \).

Example 6. Let \(n = 15 \). Then 15 is of the form \(4^k \ (8t + 7) \) and cannot be expressed as the sum of three squares.

3. The sum of four squares.

Lagrange’s Theorem: We state the theorem without proof and use it.

Theorem 8 Every natural number is the sum of four squares.

Example 4:

\[
\begin{align*}
(1) & \quad 5 = 2^2 + 1^2 + 0^2 \\
(2) & \quad 21 = 4^2 + 2^2 + 1^2 + 0^2 \\
(3) & \quad 28 = 5^2 + 1^2 + 1^2 + 1^2 \\
\end{align*}
\]

(4) **Sum of squares of consecutive integers**

Theorem 8 The sum of the squares of the first \(n \) natural numbers is given by

\[
\sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

Proof: Easily follows using induction.

Corollary 1: The sum of the squares of the first \(n \) **even** natural numbers is given by
\[
\sum_{k=1}^{n} (2n)^2 = \frac{2n(n + 1)(2n + 1)}{3}
\]

Corollary 2. The sum of the squares of the first **even odd natural** numbers is given by

\[
\sum_{k=1}^{n} (2n - 1)^2 = \frac{n(2n + 1)(2n - 1)}{3}
\]

Noble Dedication. This interesting research paper is dedicated to Dr. Mustafa Mohammed, Interim Dean of COST at Savannah State University for his great encouragement and support in advancing my research activities. Thank Dr. Mustafa.

Acknowledgements:

Special thanks to:

1. Aster Debebe
2. Tadesse Dejene
3. Shamble Debebe
4. Mekonen Tefera
5. Mesfin Endzenaw
6. Bisrat Debebe
7. Samera Mulatu
8. Abyssinia Mulatu
9. Abyoit Negassa
10. Asnaketch Andarge
References:

1. Petel Clark, Sum of two squares.
2. Jahnavi Bhaskar, Sum of two squares.
3. Alan Beardon, Sum of Squares and sum or cubes.