Note on the Fascinating Fermat Numbers

Mulatu Lemma, Noel Mengistie and Samera Mulatu

Department of Mathematics
Savannah, GA 31404
USA

Abstract: A Fermat number is an integer of the form

$$
F_{n}=2^{2^{n}}+1 \quad \mathrm{n} \geq 0
$$

The Fermat numbers are named after the French mathematician Pierre de Fermat (1601-1665) who first studied numbers of such form.
In this paper we investigated some interesting properties of the Fermat numbers.
The first five Fermat numbers are $1,5,17,257$ and 65537.
The Main Results
The following two theorems deal with the recursive properties of the Fermat Numbers.

Theorem 1. $\quad F_{n+1}=\left(F_{n}-1\right)^{2}+1 \quad$ for $n \geq 0$
Proof: $\quad\left(F_{n}-1\right)^{2}=\left(2^{2^{n}}+1-1\right)^{2}+1$

$$
=\left(2^{2^{n}}\right)^{2}+1
$$

$$
=2^{2^{n}} \cdot 2^{2^{n}}+1
$$

$$
=2^{2 \cdot 2^{n}}+1
$$

$$
=2^{2^{n+1}}+1
$$

$$
=F_{n+1}
$$

Example 1: Note that

$$
F_{3}=\left(F_{2}-1\right)^{2}+1
$$

$$
\begin{aligned}
& =\left(2^{2^{2}}-1+1\right)^{2}+1 \\
& =\left(2^{2^{2}}\right)^{2}+1 \\
& =2^{2^{3}}+1 \\
& =2^{8}+1 \\
& =257
\end{aligned}
$$

Theorem 2. $\quad F_{n}=F_{0} \ldots F_{n-2} \cdot F_{n-1}+2 \quad$ for $n \geq 1$

Proof: We use induction n

Step 1: $\quad n=1$ holds as

$$
F_{0}+2=3+2=5=F_{1}
$$

Step 2: \quad Assume the hypothesis is true $n=k$ that is

$$
F_{0} \ldots F_{k-1}+2=F_{k}
$$

Step 3: Prove that the hypothesis holds for $n=k+1$. We have

$$
\begin{aligned}
F_{0} \ldots F_{k}+2 & =F_{0} \ldots F_{k-1} \cdot F_{k}+2 \\
= & \left(F_{k}-2\right) \cdot F_{k}+2 \\
= & \left(2^{2^{k}}+1-2\right)\left(2^{2^{k}}+1\right)+2 \\
= & \left(2^{2^{k}}-1\right)\left(2^{2^{k}}+1\right)+2 \\
= & 2^{2^{k+1}}-1+2 \\
= & 2^{2^{k+1}}+1 \\
= & F_{k+1}
\end{aligned}
$$

Example 2: Observe that

$$
\begin{aligned}
F_{3} & =F_{0} \cdot F_{1}+F_{2}+2 \\
& =3 \cdot 5+17+2 \\
& =255+2 \\
& =257
\end{aligned}
$$

Corollary 1: For $n \geq 1$, we have

$$
F_{n}=2\left(\bmod F_{m}\right) \text { for all } m=0,1, \ldots, n-1
$$

Proof: Easily follows by Theorem 2
Corollary 2: For $n \geq 2$, we have the last digit of $F_{n}=7$
Proof: From Corollary 1, we have

$$
\begin{aligned}
& F_{n}=2(\bmod 5) \\
\Rightarrow & F_{n}=2(\bmod 5) \text { as all } F_{n} \text { are odd } \\
\Rightarrow & \text { the last digit of } F_{n}=7
\end{aligned}
$$

Theorem 3. Every F_{n} is of the form

$$
6 k-1 \text { for } n \geq 1
$$

Proof: Note by Theorem 2,

$$
\begin{aligned}
& F_{n+1}=F_{0} \cdot F_{1} \ldots F_{n}+2+1 \\
& \quad=3 \cdot F_{1} \ldots F_{n}+3 \\
& \quad=3\left(F_{1} \ldots F_{n}+1\right) \\
& F_{1} \ldots F_{n} \text { is odd } \Rightarrow F_{1} \ldots F_{n}+1 \text { is even and hence } \\
& F_{n+1}=3 \cdot 2 k=6 k \\
& \Rightarrow F_{n}=6 k-1
\end{aligned}
$$

Remark 1. The first five Fermat numbers $1,5,17,257$ and 65537 are all primes. A question must be raised if all Fermat numbers are primes. But this is not true as shown by the following theorem. We give our own new proof to this theorem.

Theorem 4. The Fermat number $F_{5}=4,294,967,297$ is divisible by 641
Proof: Observe that $641=5 \cdot 2^{7}+1$ and $F_{5}=2^{3^{2}}+1$. Now we have

$$
5 \cdot 2^{7} \equiv-1(\bmod 641)
$$

$$
\begin{aligned}
& \Rightarrow\left(5 \cdot 2^{7}\right)^{4} \equiv-1^{4}(\bmod 641) \\
& \Rightarrow 5^{4} \cdot 2^{28} \equiv 1(\bmod 641) \\
& \Rightarrow 625 \cdot 2^{28} \equiv 1(\bmod 641) \\
& \Rightarrow(-16) \cdot 2^{28} \equiv 1(\bmod 641) \\
& \Rightarrow 16 \cdot 2^{28} \equiv-1(\bmod 641) \\
& \Rightarrow 2^{4} \cdot 2^{28} \equiv-1(\bmod 641) \\
& \Rightarrow 2^{32} \equiv-1(\bmod 641) \\
& \Rightarrow 2^{32}+1 \equiv 0(\bmod 641) \\
& \Rightarrow 641 \mid\left(2^{32}+1\right) \\
& \Rightarrow 641 \mid F_{5}
\end{aligned}
$$

Theorem 5. The Fermat numbers are relatively prime to each other.
Proof: Let F_{m} and F_{n} be two Fermat numbers, where $m>n \geq 0$. Let $d=\operatorname{gcd}\left(F_{n}, F_{m}\right)$. Observe that Fermat numbers are odd numbers, $\operatorname{gcd}\left(F_{n}, F_{m}\right)$ must be odd. That is d is odd.
Let $x=2^{2^{n}} \quad k=2^{m-n}$, then

$$
\begin{gathered}
\frac{F_{m}-2}{F_{n}}=\frac{\left(2^{2^{n}}\right)^{n-n} 2-1}{2^{2^{n}}+1} \\
=\frac{x^{k}-1}{x+1}=x^{k-1}-x^{k-2}+\ldots+1 \\
\Rightarrow F_{n}\left(F_{m}-2\right) \Rightarrow d\left|P_{n} \Rightarrow d\right|\left(F_{m}-2\right) \\
\quad \Rightarrow d \mid 2 \text { as } d \mid m \Rightarrow d=1
\end{gathered}
$$

We state the following Pepin's Test as Theorem 3 without proof and use it.
Theorem 6. Pepin's Test. For $n \geq 1$, the Fermat number $F_{n}=2^{2^{n}}+1$ is prime $\Leftrightarrow 3^{\left(F_{n-1}\right) / 2} \equiv-1 \bmod \left(F_{n}\right)$
Corollary 3. Using Pepin's Test prove that $F_{3}=257$ is prime. Note that

Proof

$$
\begin{aligned}
3^{\left(F_{3-1}\right) / 2} & \equiv 3^{128}=3^{3}(5)^{25} \\
& \equiv 27(-14)^{25} \\
& \equiv 27 \cdot 14^{24}(-14) \\
& \equiv 27(17)(-14) \\
& \equiv 27 \cdot 19 \equiv 513 \equiv-1(\bmod 257) \\
& \Rightarrow F_{3} \quad \text { Is prime } .
\end{aligned}
$$

Theorem 7. No Fermat number F_{n} for $n \geq 2$ can be expressed as the sum of two primes.

Proof. We use proof By Contradiction. Assume that there exists $n \geq 2$ such that F_{n} could be expressed as the sum of two primes. Observe that since F_{n} is odd, one of the primes must be 2 . Then the other prime would
equal $F_{n}-2=F_{n}-2=2^{2^{n}}-1=\left(2^{2^{n-1}}+1\right)\left(2^{2^{n-1}}-1\right)$ which is not a prime

Acknowledgments. Special Thanks to:

1. Aster Debebe
2. Zenaye Mengistie
3. Tadesse Dejene
4. Yohannis Debebe
5. Genet Wondimu
6. Asrat Worku
7. Beruke Debebe

References:

1. Burton, D. M. (1998). Elementary number theory. New York City, New York: McGrawHill.
2. Dodge, C. W. (1975). Numbers and mathematics. Boston, Massachusetts: Prindle, Weber \& Schmidt Inc..
3. Dudley, Underwood (1969). Elementary number theory. San Francisco: W. H. Freeman and Company.
4. Jackson, T. H. (1975). Number theory. Boston, Massachusetts: Rouledge \& Kegan Paul Ltd..
