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1 . Second Order Periodic Boundary Value Problem.  

Let ℝ denote the real line. Given a closed and bounded interval 𝐽 = [𝑂, 𝑇]in ℝ. Consider 
the periodic boundary value problems (in short 𝑃𝐵𝑉𝑃 ) of second order ordinary Differential 
equations with period 𝑇 

                 
−

𝑑2

𝑑𝑡2
[

𝑥(𝑡)

𝑓(𝑡,𝑥(𝑡),𝑥′(𝑡))
] = 𝔤(𝑡, 𝑥(𝑡)𝑥′(𝑡))    𝑎. 𝑒. 𝑡 ∈ 𝐽

  𝑥(𝑂) = 𝑥(𝑇),  𝑥′(𝑂) = 𝑥′(𝑇),  𝑥′′(𝑂) = 𝑥′′(𝑇)  
}             (1.1) 

Where 𝑓: 𝐽 × ℝ × ℝ⟶ ℝ+ − {0}    &     𝑔: 𝐽 × ℝ × ℝ⟶ ℝ 

By a solution of the 𝑃𝐵𝑉𝑃 (1.1) we mean a function 𝑥 ∈ 𝐴𝐶1(𝐽, ℝ) that satisfies 

i) The function 𝑡 ⟶
𝑑

𝑑𝑡
(

𝑥(𝑡)

𝑓(𝑡,𝑥(𝑡),𝑥′(𝑡))
)  

is absolutely continuous defined on 𝐽 and 

ii) 𝑥  satisfies the equations in (1.1) 

Where 𝐴𝐶1(𝐽, ℝ) is the space of continuous functions whose first and second derivative exists 
and is absolutely continuous real valued functions defined on  𝐽. When  𝑓(𝑡, 𝑥, 𝑥′) = 1 for all 𝑡 ∈
𝐽 and 𝑡 ∈ ℝ, the PBVP (1.1) reduces to a   

−𝑥′′(𝑡) = 𝑔(𝑡, 𝑥(𝑡), 𝑥′(𝑡))       𝑎 . 𝑒.   𝑡 ∈ 𝐽  

𝑥(0) = 𝑥(𝑇), 𝑥′(0) = 𝑥′(𝑇) ,  𝑥′′(𝑂) = 𝑥′′(𝑇) 

} 

                            (1.2) 

Where  𝑔: 𝐽 × ℝ × ℝ ⟶ ℝ 

In the following section we describe some basic tools from nonlinear functional analysis 
which will be used in subsequent part of article.  
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2.Auxiliary Results  

              Let X be a Banach algebra with norm ‖. ‖. A mapping A: X → 𝑋 is called 𝒟-Lipschitz if there 
exists a continuous non-decreasing function  𝜓:ℝ+ ⟶ℝ+ satisfying  

                                                            ‖𝐴𝑥 − 𝐴𝑦‖ ≤ 𝜓(‖𝑥 − 𝑦‖)                                                       (2.1) 

    For all 𝑥, 𝑦 ∈ 𝑋 with𝜓(0) = 0.  In the special case when 𝜓(𝑟) = 𝛼𝑟, (𝛼 > 0),  A is called  
Lipschitz  with the Lipschitz constant 𝛼. In particular, if 𝛼 < 1,  a is called contraction with 
contraction constant . 𝛼    Further , if 𝜓(𝑟) < 𝛼 for all𝑟 >  0 , then A is called nonlinear  𝒟 -
contraction on X. Sometimes we call  the function 𝜓 a D- function of A on X for convenience.  

     An operator   𝐵 ∶ 𝑋 → 𝑋 is called compact if  𝐵(𝑠)̅̅ ̅̅ ̅̅  is a compact subset of  X  for  any S⊂X. 
Similary B ∶ 𝑋 → 𝑋  is called totally bounded of B maps a bounded subset of 𝑋 into a relatively 
compact subset of X.  Finally 𝐵 ∶  𝑋 → 𝑋   is called completely continuous operator if it is 
continuous and totally bounded operator on 𝑋. A non linear alternative of Schaefer type 
recently proved by Dhage [3] is embodied in the following theorem. 

Theorem  2.2  ( Dhage [3]), Let ℬ𝑟(0) and  ℬ𝑟(0)  be respectively open and closed 

balls in a Banach algebra X centered at origin 0 and of radius 𝑟.  𝐿𝑒𝑡 𝐴, 𝐵 ∶  ℬ𝑟(0)  → 𝑋 be two 
operators satisfying. 

a) A is Lipschitz   with a Lipschitz constant  𝛼. 
b) B is compact and continuous, and 

c) 𝛼 𝑀 < 1, where 𝑀 = ‖ℬ(ℬ𝑟(0))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ‖  ∶= 𝑠𝑢𝑏 {‖𝐵𝑥‖: 𝑥𝜖 ℬ𝑟(0)} 

Then either 

(i) the equation 𝜆[𝐴𝑥𝐵𝑥] = 𝑥 has solution for 𝜆 = 1    or 

(ii) there exists an 𝑢 ∈ 𝑋 such that ‖𝑢‖ = 𝑟  satisfying   

 𝜆[𝐴𝑥 𝐵𝑥] = 𝑢 For some  0 < 𝜆 < 𝐼 

       In the following sections we prove the main existence results of this article. 

3. Existence Theory 

    Let B( J, ℝ ) denote the space of bounded real-valued functions defined on J.  LetC( J, ℝ ), 
denote the space of all continuous real-valued functions defined onJ. Define a norm ‖∙‖and a 
multiplication “ ∙ ” in C( J, ℝ ) by 

‖𝑥‖ =
𝑠𝑢𝑝

𝑡 ∈ 𝐽
|𝑥(𝑡)| 

And       (𝑥 ∙ 𝑦)(𝑡) = (𝑥𝑦)(𝑡) = 𝑥(𝑡) ∙ 𝑦(𝑡)   for 𝑡 ∈ 𝐽, clearly 𝐶 (𝐽, ℝ) becomes Banach algebra 
with respect to above normal and multiplication. By  𝐿1(𝐽, ℝ) we denote the vector space of 
Lebesgne integrable functions defined on 𝐽 and the norm ‖∙‖𝐿1  in  𝐿1(𝐽, ℝ) is defined       ‖𝑥‖𝐿1 =

∫ |𝑥(𝑡)| 𝑑𝑠
𝑇

0
. 
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The following lemma appears in Nieto [1] and which is useful in the study of second order periodic 
boundary value problems of ordinary differential equations. 

Lemma 3.1 for any real number  𝑚 > 0 and 𝜎 ∈ 𝐿1(𝐽, ℝ), 𝑥 is a solution to the differential 
equation 

− 𝑥′′(𝑡) + 𝑚2𝑥(𝑡) = 𝜎(𝑡)       𝑎. 𝑒. 𝑡 ∈ 𝐽

𝑥(0) = 𝑥(𝑇), 𝑥′(0) = 𝑥′(𝑇),  𝑥′′(𝑂) = 𝑥′′(𝑇)

 } 

 (3.2) 

if and only if it is a solution of the integral equation      𝑥(𝑡) = ∫ 𝐺𝑚(𝑡, 𝑠)𝜎(𝑠)𝑑𝑠
𝑇

0
                   (3.3)                                                                                        

Where 

G
𝑚
(𝑡, 𝑠) = {

1

2𝑚(𝑒𝑚𝑇−1)
[𝑒𝑚(𝑡−𝑠) + 𝑒𝑚(𝑇−𝑡+𝑠)], 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

1

2𝑚(𝑒𝑚𝑇−1)
[𝑒𝑚(𝑠−𝑡) + 𝑒𝑚(𝑇−𝑠+𝑡)] 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇

                                                     (3.4) 

Notice that the Green’s function 𝐺𝑚 is continuous and nonnegative on 𝐽 × 𝐽 and the numbers 

           𝛼 = 𝑚𝑖𝑛{|𝐺𝑚(𝑡, 𝑠)| ∶ 𝑡, 𝑠 ∈ [0, 𝑇]} =
𝑒𝑚𝑇

𝑚(𝑒𝑚𝑇−1)
   and                                                                  

          𝛽 = 𝑚𝑎𝑥{|𝐺𝑚(𝑡, 𝑠)| ∶ 𝑡, 𝑠 ∈ [0, 𝑇]} =
𝑒𝑚𝑇+1

2𝑚(𝑒𝑚𝑇−1)
   exist for all  positive real number  . 

We need the following definition in the  

Definition  3.5 A mapping 𝛽 ∶ 𝐽 × ℝ × ℝ⟶ ℝ is said to be caratheodory if 

(i) 𝑡 ⟼ 𝛽(𝑡, 𝑥, 𝑥′) is measurable for each and 𝑥 ∈ ℝ and 

(ii) 𝑥 ⟼ 𝛽(𝑡, 𝑥, 𝑥′) continuous almost everywhere for 𝑡 ∈ 𝐽.  

Again, a caratheodory function 𝛽(𝑡, 𝑥, 𝑥′) is called 𝐿1- caratheodory if 

(iii) For each real number 𝑟 > 0 there exists a function ℎ𝑟 ∈ 𝐿
1(𝐽, ℝ) such that    

|𝛽(𝑡, 𝑥, 𝑥′)| ≤ ℎ𝑟(𝑡)   𝑎. 𝑒 𝑡 ∈ 𝐽  for all 𝑥 ∈ ℝ with |𝑥| ≤ 𝑟. 

Finally, a caratheodory function 𝛽(𝑡, 𝑥, 𝑥′) is called 𝐿ℝ
1  caratheodory if 

(iv) there exists a function ℎ ∈ 𝐿1(𝐽, ℝ) such that  

                   |𝛽(𝑡, 𝑥, 𝑥′)| ≤ ℎ(𝑡)           𝑎. 𝑒 𝑡 ∈ 𝐽 for all  𝑥 ∈ ℝ.  

For convenience, the function ℎ is referred to as a bound function of  𝛽. 

We will use the following hypotheses in the sequel. 

(A0) The functions 𝑡 ⟼ 𝑓(𝑡, 𝑥, 𝑥′), 𝑡 ⟼ 𝑓𝑡(𝑡, 𝑥, 𝑥′) and  

IJRDO-Journal of Mathematics                         ISSN: 2455-9210

Volume-4 | Issue-3 | March,2018 20



            𝑡 ⟼ 𝑓𝑥 (𝑡, 𝑥, 𝑥′)  are periodic of T all 𝑥 ∈ ℝ. 

(A1) The functions 𝑡 ⟼
𝑥

𝑓(0,𝑥,𝑥′)
 is injective in  ℝ. 

(A2) 𝑓 ( 𝑜, 𝑥, 𝑥′ ) ≠ 𝑥 𝑓𝑥 (𝑜, 𝑥, 𝑥′ ) for all 𝑥 ∈ ℝ, where      𝑓𝑥 (𝑜, 𝑥, 𝑥
′) =

𝜕 𝑓 ( 𝑡,𝑥,𝑥′)

𝜕 𝑥
|
𝑡=𝑜

 

(A3) The functions 𝑓 ∶ 𝐽 × ℝ × ℝ → ℝ is continuous. 

(A4) The functions 𝑓 ∶ 𝐽 × ℝ × ℝ → ℝ is continuous and there exists a function  ℓ ∈
 𝐵 (𝐽, ℝ) such that        |𝑓 (𝑡, 𝑥, 𝑥′) −  𝑓 (𝑡, 𝑦, 𝑦′)| ≤ ℓ(𝑡){|𝑥 − 𝑦| + |𝑥′ − 𝑦′|}   for 
all 𝑡 ∈ 𝐽 and  𝑥, 𝑦 ∈ ℝ. Moreover, we assume that        𝐿 =  𝑡∈𝐽

𝑚𝑎𝑥 ℓ(𝑡). 

(A5) The function  𝑔  is caratheodory. 

Remark 3.6 Note that hypotheses (A3) though (A5) are much common in the literature on the 
theory nonlinear differential equations. Similarly, there do exist functions satisfying the 
hypotheses (A0) though (A2). Indeed, it is easy to verify that the function 𝑓 ∶ 𝐽 × ℝ × ℝ → ℝ 
defined by  𝑓 (𝑡, 𝑥, 𝑥′) = 𝑎 + 𝑏𝑥 + 𝑐𝑥′ for some 𝑎 , 𝑏 ∈  ℝ with a ≠ 0 and  𝑎 + 𝑏𝑥 + 𝑐𝑥′ ≠ 0 
satisfies the hypotheses (A0) − (A4) mentioned above.  

Now consider the linear perturbation of the 𝑃𝐵𝑉𝑃 (1.1) of first type,   

−(
𝑥(𝑡)

𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))
)

′′

+𝑚2 (
𝑥(𝑡)

𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))
) = 𝑔𝑚(𝑡, 𝑥(𝑡), 𝑥

′(𝑡))       𝑎. 𝑒. 𝑡 ∈  𝐽

𝑥(0) = 𝑥(𝑇), 𝑥′(0) = 𝑥′(𝑇) }
 
 

 
 

 

                               (3.7) 

Where 𝑚 > 0 is a real number and the function 𝑔𝑚 ∶  𝐽 × ℝ × ℝ → ℝ is defined by  

                   𝑔𝑚 (𝑡, 𝑥, 𝑥
′) = 𝑔(𝑡, 𝑥, 𝑥′) + 𝑚2 (

𝑥

𝑓(𝑡,𝑥,𝑥′)
)                                                                      (3.8) 

Lemma 3.9  Assume that hypotheses (A0) − (A4) holds. Then for any real number 𝑚 > 0 and  

𝑔𝑚  (𝑡, 𝑥(𝑡), 𝑥
′(𝑡))  ∈ 𝐿1 (𝐽, ℝ), 𝑥 is a solution to the differential equation (3.7) if and only if it is 

a solution of the integral equation 

                     𝑥(𝑡) = [𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))] (∫ 𝐺𝑚(𝑡, 𝑠)
𝑇

0
𝑔𝑚 (𝑠, 𝑥(𝑠)𝑥

′(𝑠))𝑑𝑠)                            (3.10) 

Where the Green’s function 𝐺𝑚(𝑡, 𝑠) is defined by (3.4) 

We make use of the following hypothesis in the sequel. 

(A6) There exists a continuous and non-decreasing function 𝜓 ∶ [0,∞) → (0,∞) and function        
𝛾 ∈ 𝐿1(𝐽, ℝ) such that 𝛾(𝑡)  > 0,     𝑎. 𝑒.   𝑡 ∈ 𝐽  satisfying |𝑔𝑚 (𝑡, 𝑥, 𝑥

′)| ≤
𝛾(𝑡) 𝜓 (|𝑥|)     𝑎. 𝑒.   𝑡 ∈ 𝐽 

IJRDO-Journal of Mathematics                         ISSN: 2455-9210

Volume-4 | Issue-3 | March,2018 21



for all 𝑥 ∈ ℝ. 

Theorem 3.11    Assume that the hypotheses (A0) − (A4) and (A5) − (A6) hold. Suppose that 
there exists a real number 𝑟 > 0  such that 

𝑟 >
𝐹0 [

𝑒𝑚 𝑇 + 1
2𝑚(𝑒∈𝑚𝑇 − 1)

] ‖𝛾‖𝐿1ψ(𝑟)

1 − 𝐿 [
𝑒𝑚𝑡 + 1

2𝑚(𝑒∈𝑚𝑇 − 1)
] ‖𝛾‖𝐿1ψ(𝑟)

 

(3.12) 

Where          𝐿 [
𝑒𝑚 𝑇+1

2𝑚(𝑒∈𝑚𝑇−1)
] =  ‖𝛾‖𝐿1ψ(𝑟) < 1 and  𝐹0 = |𝑓(𝑡, 𝑜)|𝑡∈[𝑜.𝑇]

𝑠𝑢𝑝  

Then the 𝑃𝐵𝑉𝑃 (1.1).has solution defined on J. 

Proof: Let 𝑥 = 𝐶(𝐽, ℝ). Defined on open ball  ℬ𝑟(0)  centered at origin 0 of radius 𝑟, where the 
real number 𝑟 satisfies the inequality (3.12). Define two mappings  A and B on ℬ𝑟(0) by 

                         𝐴𝑥 (𝑡) =  𝑓 (𝑡, 𝑥 (𝑡), 𝑥′(𝑡)), 𝑡 ∈ 𝐽                                                                           (3.13) 

and         𝐵𝑥 (𝑡) =  ∫ 𝐺𝑚(𝑡, 𝑠) 𝑔𝑚(𝑠, 𝑥 (𝑠), 𝑥
′(𝑠)) 𝑑𝑠

𝑇

0
, 𝑡 ∈ 𝐽                                                     (3.14) 

Obviously A and B define the operators 𝐴, 𝐵 ∶ ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅ → 𝑋. Then the integral equation (3.10) is 
equivalent to the operator equation               

                                                    𝐴𝑥 (𝑡) 𝛽𝑥 (𝑡) = 𝑥 (𝑡), 𝑡 ∈ 𝐽                                                          (3.15) 

We shall show that the operators A and B satisfy all the hypotheses of Theorem (2.2). 

We first show that A is Lipchitz on ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅  . 

Let 𝑥, 𝑦 ∈ X . Then by (A3), 

|𝐴𝑥(𝑡) − 𝐴𝑦(𝑡)| ≤ |𝑓 (𝑡, 𝑥(𝑡), 𝑥′(𝑡)) −  𝑓(𝑡, 𝑦(𝑡), 𝑦′(𝑡))| 

            ≤ ℓ(𝑡)𝑚𝑎𝑥{|𝑥(𝑡) − 𝑦(𝑡)| + |𝑥′(𝑡) − 𝑦′(𝑡)|}  

 ≤  𝐿  ‖𝑥 − 𝑦‖ 

for all  𝑡 ∈ 𝐽.  Taking the supremum over 𝑡, we obtain      ‖𝐴𝑥 − 𝐴𝑦‖ ≤  𝐿  ‖𝑥 − 𝑦‖ 

for all 𝑥, 𝑦 ∈ ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅   . So A is Lipschitz on ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅   with the Lipschitz constant L. Next we show 
that 𝐵 is completely continuous on X. Using  the standard arguments as in Granas et. al.  [2], it is 

shown that 𝐵 is a continuous operator on ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅  . We shall show that 𝐵 (ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅ ) is uniformly 

bounded and equicontinous set in X. Let 𝑥 ∈ ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅  be arbitrary. Since 𝑔 is caratheodory, we 
have 
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|𝐵𝑥 (𝑡)| ≤ |∫ 𝐺𝑘(𝑡, 𝑠) 𝑔𝑚(𝑠, 𝑥 (𝑠), 𝑥
′(𝑠)) 

𝑇

0

𝑑𝑠| 

                                                                 ≤ [
emT+1

2m(emT−1)
] ∫ [γ(s)ψ(|x(s)|)]

T

0
ds 

                                                                 ≤ [
emT+1

2m(emT−1)
] ∫ γ(s)ψ(|x(s)|)

T

0
ds 

                                                                  ≤ [
emT+1

2m(emT−1)
] ‖𝛾‖𝐿1ψ(𝑟) 

Taking the supremum over 𝑡, we obtain ‖𝐵𝑥‖ ≤ 𝑀 for all 𝑥, ∈  ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅ ,  where M =

[
emT+1

2m(emT−1)
] ‖𝛾‖𝐿1ψ(𝑟)   This shows that 𝐵(ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅ ) is a uniformly bounded set in X. Next, we 

show that 𝐵(ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅ ) is an equi-continuous set in X. Let 𝑥 ∈ ℬ𝑟(0)̅̅ ̅̅ ̅̅ ̅̅  be arbitrary. Then for any 

𝑡1, 𝑡2 ∈ 𝐽 one has  

|𝐵𝑥(𝑡1) − 𝐵𝑥(𝑡2)| 

≤ ∫ |𝐺𝑚(𝑡1, 𝑠) − 𝐺𝑚(𝑡2, 𝑠)||𝑔𝑚(𝑆, 𝑥(𝑠), 𝑥
′(𝑠))|𝑑𝑠

𝑇

0

 

≤ ∫ |𝐺𝑚(𝑡1, 𝑠) − 𝐺𝑚(𝑡2, 𝑠)|𝛾 (𝑠)𝜓(|𝑥(𝑠)|)𝑑𝑠
𝑇

0

 

≤ ∫ |𝐺𝑚(𝑡1, 𝑠) − 𝐺𝑚(𝑡2, 𝑠)|𝛾 (𝑠)𝜓(𝑟)𝑑𝑠
𝑇

0

 

≤ (∫ |𝐺𝑚(𝑡1, 𝑠) − 𝐺𝑚(𝑡2, 𝑠)|
2𝑇

0
)
1
2⁄

(∫ |𝛾(𝑠)|2
𝑇

0
𝑑𝑠)

1
2⁄

𝜓(𝑟)                                                        (3.16) 

Hence for all 𝑡1, 𝑡2 ∈ 𝐽,  |𝐵𝑥(𝑡1) − 𝐵𝑥(𝑡2)| → 0 𝑎𝑠 𝑡1 ⟶ 𝑡2  uniformly for all 𝑥 ∈ ℬ𝑟(0).̅̅ ̅̅ ̅̅ ̅̅ ̅ There 

fore 𝐵ℬ𝑟(0),̅̅ ̅̅ ̅̅ ̅̅ ̅  is a equi-continuous set in X. Now 𝐵ℬ𝑟(0),̅̅ ̅̅ ̅̅ ̅̅ ̅ is a uniformly bounded and equi-
continuous set in X, so it is compact by Arzela-Ascoli theorem. As a result 𝐵  is compact and 
continuous operator on ℬ𝑟(0). Thus, all the conditions of theorem (2.2) are satisfied and a direct 
application of it yields that either the conclusion (i) or the conclusion (ii) holds. We show that the 
conclusion (ii) is not possible. Let  𝑢 ∈ 𝑋 be a solution to the operator equation  𝜆 [𝐴𝑢 𝐵𝑢] = 𝑢  
for some 0 < 𝜆 < 1 satisfying ‖𝑢‖ = 𝑟. Then we have, for any 𝜆 ∈ (0,1),  𝑢(𝑡) =

𝜆[𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡))] (∫ 𝐺𝑚(𝑡, 𝑠)𝑔𝑚(𝑠, 𝑥(𝑠), 𝑥
′(𝑠))𝑑𝑠

𝑇

0
) 

for 𝑡 ∈ 𝐽. Therefore, 

|𝑢(𝑡)| ≤ 𝜆|𝑓(𝑡, 𝑢(𝑡), 𝑢′(𝑡))| (|∫ 𝐺𝑚(𝑡, 𝑠)𝑔𝑚(𝑠, 𝑢(𝑠), 𝑢
′(𝑠))𝑑𝑠

𝑇

0

|) 

              ≤ 𝜆(|𝑓(𝑡, 𝑥(𝑡), 𝑥′(𝑡)) − 𝑓(𝑡, 0,0)| + |𝑓(𝑡, 0,0)|) × 
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(∫ 𝐺𝑚(𝑡, 𝑠)|𝑔𝑚(𝑠, 𝑢(𝑠), 𝑢
′(𝑠))|𝑑𝑠

𝑇

0

) 

           ≤ [ℓ(𝑡)|𝑢(𝑡)| + 𝐹0] (∫ [
𝑒𝑚𝑇+1

2𝑚(𝑒𝑚𝑇−1)
]

𝑇

0
|𝑔𝑚(𝑠, 𝑢(𝑠), 𝑢

′(𝑠))|𝑑𝑠) 

          ≤ 𝐿 [
𝑒𝑚𝑇+1

2𝑚(𝑒𝑚𝑇−1)
] |𝑢 (𝑡)| (∫ 𝛾(𝑠)𝜓

𝑇

0
(|𝑢(𝑠)|)𝑑𝑠) 

          +𝐹0 [
𝑒𝑚𝑇+1

2𝑚(𝑒𝑚𝑇−1)
] (∫ 𝛾(𝑠)𝜓

𝑇

0
(|𝑢(𝑠)|)𝑑𝑠) 

         ≤ 𝐿 [
𝑒𝑚뿬+1

2𝑚(𝑒𝑚𝑇−1)
] ‖𝛾‖𝐿1  𝜓(‖𝑢‖)|𝑢 (𝑡)| + 𝐹0 [

𝑒𝑚𝑇+1

2𝑚(𝑒𝑚𝑇−1)
] ‖𝛾‖𝐿1 𝜓(‖𝑢‖)                           (3.17) 

Taking the supremum in the above inequality (3.16) 

‖𝑢‖ ≤
𝐹0 [

𝑒𝑚𝑇 + 1
2𝑚(𝑒𝑚𝑇 − 1)

] ‖𝛾‖𝐿1  𝜓(‖𝑢‖)

1 − 𝐿 [
𝑒𝑚𝑇 + 1

2𝑚(𝑒𝑚𝑇 − 1)
] ‖𝛾‖𝐿1  𝜓(‖𝑢‖)

 

Substituting ‖𝑢‖ = 𝑟 in above inequality,         

𝑟 ≤
𝐹0 [

𝑒𝑚𝑇 + 1
2𝑚(𝑒𝑚𝑇 − 1)

] ‖𝛾‖𝐿1𝜓(𝑟)

1 − 𝐿 [
𝑒𝑚𝑡 + 1

2𝑚(𝑒𝑚𝑇 − 1)
] ‖𝛾‖𝐿1𝜓(𝑟)

 

This is contradiction to inequality (3.12). Hence the conclusion (ii) of theorem (2.2) does 
not hold. Therefore, the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 and consequently the 𝑃𝐵𝑉𝑃 (1.1) has a 
solution defined on 𝐽. This completes the proof. 

 

4.  An  Example:   Given a closed and bounded interval  𝐽 =  [0,2𝜋] of the real line ℝ, consider 
the 𝑃𝐵𝑉𝑃 of ordinary second order differential equation, 

−
𝑑2

𝑑𝑡2
[

𝑥(𝑡)

𝑎 + 𝑏𝑥(𝑡)
] =  − [

𝑥(𝑡)

𝑎 + 𝑏𝑥(𝑡)
] =

𝑡𝑥2(𝑡)

𝜋2[1 + 𝑥2(𝑡)]
      𝑎. 𝑒.   𝑡 ∈ 𝐽. 

                                                𝑥(0) = 𝑥 (2𝜋),         𝑥′(0) =  𝑥′(2𝜋)                                                  (4.1) 

where  𝑎, 𝑏 ∈ ℝ satisfying 𝑎 ≠ 0 and 𝑎 + 𝑏𝑥 > 0  for all 𝑥 ∈ ℝ+. 

Here              𝑓(𝑡, 𝑥) =  𝑎 + 𝑏𝑥 > 0 

And                𝑔(𝑡, 𝑥) = − [
𝑥

 𝑎+𝑏𝑥
 ] +

𝑡𝑥2

𝜋2[1+𝑥2]
 

for all 𝑡 ∈ 𝐽 and all 𝑥 ∈ ℝ+. Taking  𝑚 = 1, we obtain    
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𝑔𝑚(𝑡, 𝑥) = 𝑔1(𝑡, 𝑥) =
𝑡𝑥2

𝜋2[1 + 𝑥2]
 > 0 

for all 𝑡 ∈ 𝐽 and all 𝑥 ∈ ℝ+.  

It is easy to verify that all 𝑓 is continuous and satisfies the hypotheses (𝐴0)  and  (𝐴4)  in 
view of Remark (2.6). Further,  𝑓 is Lipschitz on  

𝐽 × ℝ  with Lipschitz function  ℓ(𝑡) = |𝑏| for 𝑡 ∈ 𝐽 and so ,  𝐿 = = |𝑏|.𝑡∈𝐽
𝑠𝑢𝑝   

Now, 

|𝑔𝑚(𝑡, 𝑥)| =  𝑔1(𝑡, 𝑥) = |
𝑡𝑥2

𝜋2[1 + 𝑥2]
| =

𝑡

𝜋2
= 𝛾(𝑡)𝜓(|𝑥|) 

for all  𝑡 ∈ 𝐽 and all 𝑥 ∈ ℝ+.Where 𝛾(𝑡) =
𝑡

𝜋2
 and  ψ(𝑟) =1 for all 𝑟 > 0.  

 Hence  

‖𝛾‖𝐿1 = 
1

𝜋2
 ∫ 𝑡 𝑑𝑡 = 2

2𝜋

0

 

Again, 

 

𝐿 [
𝑒2𝑚𝜋 + 1

2𝑚 (𝑒2𝑚𝜋 − 1)
] ‖𝛾‖𝐿1ψ(𝑟) = |b| 

(e2π + 1)

(e2π − 1)
 

 

Thus, if    |b| <
e2π−1

(e2π+1)
,  Then   |b|

e2π+1

(e2π−1)
< 1, 

And consequently, by theorem (3.11), the  𝑃𝐵𝑉𝑃 (4.1) has a solution in a closed ball ℬ𝑟(0),̅̅ ̅̅ ̅̅ ̅̅ ̅   
where the number 𝑟 satisfies the inequality 

𝑟 >
|𝑎|(e2π+1)

(e2π−1)−|b|(e2π+1)
      defined on     𝐽.  
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