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Abstract— In this work, we introduce families of similar curves in 4D-Galilean space with variable            

transformation. Also, we obtain some characterizations of this family and some theorems. Moreover, 

Using new Serret-Frenet vectors of these curves, we obtain some new relationships between with non-

zero curvatures of the similar partner curves and unit tangent vector T of ξ satisfies a vector 

differential equation of fourth order in 4D-Galilean space. 
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I. INTRODUCTION 

     In differential geometry, special curves have an important role. Especially the partner curves, i.e., 

the curves which are related to each other at the corresponding points, have attracted the attention of 

many mathematicians. Well-known partner curves are the Bertrand curves, which are defined by the 

property that at the corresponding points of two space curves the principal normal vectors are common. 

Bertrand partner curves are studied in [1, 2, 3, 10]. Ravani and Ku transported the notion of Bertrand 

curves to the ruled surfaces and called them Bertrand offsets. 

    In recent years, researchers have begun to investigate curves and surfaces in the Galilean spaces and 

thereafter pseudo- Galilean space. The theory of the curves in Galilean spaces is extensively studied in 

Röschel (1986). In this space we refer; about spherical curves in G3, Ergüt and Öğrenmiş (2009), 

Ogrenmiş et al. (2007); on Bertrand curves Öğrenmiş et al. (2009). It is safe to report that a good 

amount of researches have also been done in pseudo-Galilean space by the aid of the interesting paper 

by Divjak (1998); and thereafter classical differential geometry papers Divjak and Milin-Sipus (2003 

and 2008) and Öğrenmiş and Ergüt (2009) [4, 5, 6, 7]. 

    Recently, Similar curves have been introduced a new type of special curves in 𝐸³ for which the arc-

length parameters have a relationship and between the space curves α and α∗ such that, at the 

corresponding points of the curves, the tangent lines of 𝛼 coincides with the tagent of  α∗, then 𝛼 is a 

called a similar curve, and  α∗ similar partner curve of α [8, 9]. 

    In this work, in the light of the existing literature we extend aspects of classical differential geometry 

topics to 4D-Galilean space, we obtain a family of curves and call them a family of similar curves in 

4D-Galilean space with variable transformation . Obtain some characterizations of these families and 

some theorems. And then we express that the families of curves with vanishing curvatures forms we 

obtain a family of similar curves in 4D-Galilean space. 

II. PRELIMINARIES 

Let 4D-Galilean space be the 4-dimensional Galilean space and ξ is a curve in 4D-Galilean space given 

cordinate form  𝜉(𝑡) = (𝜉₁(𝑡), 𝜉₂(𝑡), 𝜉₃(𝑡), 𝜉₄(𝑡)). Where 𝜉₁(𝑡), 𝜉₂(𝑡), 𝜉₃(𝑡), 𝜉₄(𝑡) are smoot 

functions. For any vectors 𝑢 = (𝑢₁, 𝑢₂, 𝑢₃, 𝑢₄) and 𝑣 = (𝑣₁, 𝑣₂, 𝑣₃, 𝑣₄) in 4D-Galilean space, The scalar 

inner product of two vectors are defined by 
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〈 𝑢 . 𝑣 〉 = {   
    𝑢 ₁𝑣₁                                  ;   𝑢 ₁ ≠ 0   𝑜𝑟  𝑣₁ ≠ 0         

𝑢2𝑣2 + 𝑢3𝑣3 + 𝑢4𝑣4      ;       𝑢 ₁ = 0   𝑜𝑟  𝑣₁ = 0
}      (1) 

 

Then,we define the Galilean cross product in 4D-Galilean space for vectors 𝑢 = (𝑢₁, 𝑢₂, 𝑢₃, 𝑢₄),  

𝑣 = (𝑣₁, 𝑣₂, 𝑣₃, 𝑣₄) and 𝑤 = (𝑤₁, 𝑤₂, 𝑤₃, 𝑤₄) as fallows: 

 

𝑢𝛬𝑣𝛬𝑤=[

0 𝑒2 𝑒3 𝑒4
𝑢1

𝑣1

𝑤1

𝑢2 𝑢3 𝑢4

𝑣2 𝑣3 𝑣4

𝑤2 𝑤3 𝑤4

] 

 

where 𝑒𝑖  (1 ≤  𝑖 ≤  4), are the standart basis vectors. Let ξ be a curve in 4D-Galilean space, 

parameterized by arc-length 𝑠, given coordinate form   𝜉(𝑠) = (𝑠, 𝜉₂(𝑠), 𝜉₃(𝑠), 𝜉₄(𝑠)). The tangent 

vector of ξ is given by 𝑇 = 𝜉′(𝑠) = (1, 𝜉₂′(𝑠), 𝜉₃′(𝑠), 𝜉₄′(𝑠)). Since T is a unit vector, we can write 

〈 𝑇, 𝑇  〉 = 1. Differentating above equation with respect to s, we obtain 〈𝑇, 𝑇′〉 = 0. From this, we 

obtain the curvature 𝜅 as                 follows: 

𝜅(𝑠) = ‖𝑇′(𝑠)‖ = √(𝜉₂′′)² + (𝜉₃′′)² + (𝜉₄′′)². 

      If  𝜅(𝑠) ≠ 0, for all s∈I. Similar to space 𝐺₃, we define the principal vector 

𝑁(𝑠) =
𝑇 ′(𝑠)

𝜅(𝑠)
=

(0, 𝜉2′′
, 𝜉3′′

, 𝜉4′′
)

𝜅(𝑠)
. 

By the differentiation of the principal normal vector given in above equation, we have second      

curvature function as follows: 

𝜏(𝑠) = ‖𝑁′(𝑠)‖. 

This real valued function is called torsion of the curve 𝜉 principal binormal vector field of the 𝜉 

given by 

𝐵(𝑠) =
1

𝜏(𝑠)
[0,

𝜉2′′(𝑠)

𝜅(𝑠)
,
𝜉3′′(𝑠)

𝜅(𝑠)
,
𝜉4′′(𝑠)

𝜅(𝑠)
] 

Principal binormal vector is orthogonal to 𝑇 and 𝑁. The secondary binormal vector is defined by 

𝐸(𝑠) = 𝜂𝑇(𝑠)𝛬𝑁(𝑠)𝛬𝐵(𝑠). 

Where 𝜂 is taken ±1 to make +1 determinant of the matrix {𝑇, 𝑁, 𝐵, 𝐸}. The third curvature of the 

curve 𝜉 is defined by 

𝜎(𝑠) = 〈𝐵′(𝑠), 𝐸(𝑠)〉. 

Then the Frenet formulae of curve 𝜉 are given by 

[

𝑇′

𝑁′
𝐵′

𝐸′

] = [

0 κ 0 0
0 0 τ 0
0
0

−τ

0
0 σ

−σ 0

] [

𝑇
𝑁
𝐵
𝐸

]         (2) 
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III.              SIMILAR PARTNER CURVES IN 4D-GALILEAN SPACE 

In this section, we give the definition and some characterizations of Similar curves in 4D-Galilean space 

with variable transformations. Before givin the characterizations, first we give the following definition and 

theorem. 

Definition 1: Let 4D-Galilean space be the 4- dimensional Galilean space with the inner product  〈  . 〉𝐺₄  

and ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)   be curves in 4D-Galilean space parameterized by arclengths 𝑠𝛼 and 𝑠β with non-

zero curvatures {𝜅𝛼 , 𝜏𝛼 , 𝜎𝛼}, {𝜅β, 𝜏β, 𝜎β} and Frenet frames {𝑇𝛼,  𝑁𝛼 ,  𝐵𝛼 ,  𝐸𝛼} and {𝑇β,  𝑁β,  𝐵β,  𝐸β}  

respectively. ξ
α
(𝑠𝛼)   and  ξ

β
(𝑠β) are called similar curve in 4D-Galilean space with variable transformation 

𝜆𝛽
𝛼 . And at the corresponding points of the curves, the tangent lines of ξ

α
(𝑠𝛼)    coincidet with the tangents 

lines of ξ
β
(𝑠β),  

𝑇𝛼(𝑠𝛼) = 𝑇β(𝑠β)     (3) 

   and  𝑠𝛼 = ∫ 𝜆𝛽
𝛼𝑑𝑠β  of arclengths 𝑠𝛼 and 𝑠β, where 𝜆𝛽

𝛼 is arbitrary function of arclength. It is worth nothing 

that 𝜆𝛽
𝛼𝜆𝛼

β
= 1. If we integrate the equality (3) we obtain the following theorem. 

Theorem 1: The position vectors of the family similar curves in 4D-Galilean space with variable 

transformation can be written in the following form, 

ξ
α
(𝑠𝛼)    = ∫ 𝑇𝛼 (𝑠𝛼(𝑠β)) 𝑑𝑠β = ∫ 𝑇β(𝑠𝛼)𝜆𝛼

β
𝑑𝑠β, 

Theorem 2: Let 𝜉 = 𝜉(𝑠)   be a curve parameterized by arclength s. Provided that 𝜉 = 𝜉(𝜑) be another 

parametrization of the curve with parameter 𝜑 = ∫𝜅(𝑠)𝑑𝑠. Then in 4D-Galilean space the unit tangent 

vector 𝑇 of 𝜉 satisfies a vector differential equation of fourth order as follows: 

 

{(
1

𝑔
) [(

1

𝑔
) (

𝑇′′

𝑓
)

′

+ (𝑓 𝑇′)]
′

+
𝑇′′

𝑓
= 0}      (4) 

              where 

𝑓(𝜑) = (
𝜏(𝜑)

𝜅(𝜑)
) , 𝑔(𝜑) = (

𝜎(𝜑)

𝜅(𝜑)
) , (𝑇)′ =

𝑑𝑇

𝑑𝜑
, ( 𝑇)′′ =

𝑑2𝑇

𝑑𝜑2
 

Proof: If we write derivatives given in (2) according to 𝜙, we obtain 

(
𝑑𝑇

𝑑𝜑
) =  (𝜅𝑁) (

1

𝜅
) = 𝑁 

(
𝑑𝑁

𝑑𝜙
) =  (−𝜏𝐵) (

1

𝜅
) = −𝑓𝐵 

(
𝑑𝐵

𝑑𝜙
) =  (−𝜏𝑁 + 𝜎𝐸) (

1

𝜅
) = −𝑓𝑁 + 𝑔𝐸 
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(
𝑑𝐸

𝑑𝜑
) =  (−𝜎𝐵) (

1

𝜅
) = −𝑔𝐵 

 

where  𝑓(𝜑) = (
𝜏(𝜑)

𝜅(𝜑)
) , 𝑔(𝜑) = (

𝜎(𝜑)

𝜅(𝜑)
). Then corresponding matrix form of above equatiıon can be given 

[

𝑇′

𝑁′
𝐵′

𝐸′

] = [

0 1 0 0
0 0 𝑓 0

0
0

𝑓
0

0 𝑔
−𝑔 0

] [

𝑇
𝑁
𝐵
𝐸

]        (5) 

Using new Frenet derivatives (5) we obtain equation (4). 

Theorem 3: Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β) be real curves in 4D-Galilean space . Then ξ

α
(𝑠𝛼)  and  ξ

β
(𝑠β) are 

similar curves with variable transformation if and only if the principal normal vectors are the same for all 

curves 

Nα(𝑠𝛼) = Nβ(𝑠β)     (6) 

     under the particular variable transformation 

𝜆𝛼
β

= (
𝑑𝑠β

𝑑𝑠𝛼
) = (

𝜅𝛼

𝜅β
).     (7) 

Proof: Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)  be real similar curves with variable transformation, Then differentiating 

equation (3) with respect to 𝑠β we obtain 

𝜅β(𝑠β)Nβ(𝑠β) = 𝜅𝛼(𝑠𝛼) Nα(𝑠𝛼)
𝑑𝑠𝛼

𝑑𝑠β
      (8) 

     The above equation leads to equations (6) and (7). 

     Conversely, let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)   be real similar curves with variable transformation in 4D-

Galilean space satisfaying (6) and (7). If we multiply (6) with 𝜅β(𝑠β) and integrate the result equality with 

respect to (𝑠β), we obtain 

∫ 𝜅β(𝑠β)Nβ(𝑠β)𝑑𝑠β = ∫ 𝜅β(𝑠β)Nβ(𝑠β)
𝑑𝑠β

𝑑𝑠𝛼
𝑑𝑠𝛼.    (9) 

From equations (6) and (7), equation (9) take the form 

𝑇β(𝑠β) = ∫ 𝜅β(𝑠β)Nβ(𝑠β)𝑑𝑠β = ∫ 𝜅𝛼(𝑠𝛼) Nα(𝑠𝛼)𝑑𝑠𝛼 = 𝑇β(𝑠𝛼) 

 

which means that ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)    are similar curves with variable transformation and proof is 

complete. 
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Theorem 4: Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)   be real curves in 4D-Galilean space . Then ξ

α
(𝑠𝛼)  and  ξ

β
(𝑠β)    are 

similar curves with variable transformation if and only if the Frenet vectors   𝐵𝛼 and  𝐵β  of the curves are 

the same for all curves 

  𝐵𝛼(𝑠𝛼) = 𝐵β(𝑠β)     (10) 

     under the particular variable transformation 

𝜆𝛼
β

=
𝑑𝑠β

𝑑𝑠𝛼
=

𝜏𝛼

𝜏β
       (11) 

 

keeping equal total curvatures, i.e.,  

𝜑β(𝑠β) = ∫ 𝜅β(𝑠β)𝑑𝑠β = ∫ 𝜅𝛼(𝑠𝛼) Nα(𝑠𝛼)𝑑𝑠𝛼 = 𝜑α(𝑠𝛼) 

of the arc-lengths. 

 

Proof: Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)    be real curves in 4D-Galilean space. Then from definition 1 and theorem 

2, there exists a variable transformation of the arc-lengths. Differentiating equation (6) with respect to 𝑠β 

we have 

σβ𝐵𝛽 =
𝑑𝑠𝛼

𝑑𝑠β

σα𝐵𝛼 

                 which gives us desired equalities (10) and  

𝜆𝛼
β

=
𝑑𝑠β

𝑑𝑠𝛼
=

𝜏𝛼

𝜏β
 

Conversely, let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)     be real curves in 4D-Galilean space satisfying (10) and (11). 

Differentiating (10) with respect to 𝑠β we have 

−𝜏𝛽(𝑠β)Nβ(𝑠β) + σ𝛽(𝑠β)Eβ(𝑠β) =
𝑑𝑠𝛼

𝑑𝑠β
(𝜏𝛼(𝑠𝛼)Nα(𝑠𝛼) + σα(𝑠α)Eα(𝑠α)     (12) 

𝑑𝑠𝛼

𝑑𝑠𝛽
=

𝜏𝛽

𝜏𝛼
 ,   

𝑑𝑠𝛽

𝑑𝑠𝛼
=

σ𝛽

σα
      (13) 

     Then from (12) we have 

𝑑𝑠𝛼

𝑑𝑠𝛽
=

𝜏𝛽

𝜏𝛼
       (14) 

Using theorem 2. Then, the unit tangents 𝑇β(𝑠β) = 𝑇β(𝑠𝛼) of the curves satisfy the following vector 

differential equation of fourth order as follows: 

 

Journal Of Mathematics                  ISSN: 2455-9210

Volume 2 Isuue 5 May 2016   5 



{(
1

𝑔𝛼(𝜑𝛼)
) [(

1

𝑔𝛼(𝜑𝛼)
) (

𝑇𝛼(𝜑𝛼)′′

𝑓𝛼(𝜑𝛼)
)

′

+ (𝑓𝛼(𝜑𝛼)𝑇𝛼(𝜑𝛼)′)]
′

+
𝑇𝛼(𝜑𝛼)′′

𝑓𝛼(𝜑𝛼)
= 0}   (15) 

 

 

{(
1

𝑔𝛽(𝜑𝛽)
) [(

1

𝑔𝛽(𝜑𝛽)
) (

𝑇𝛼(𝜑𝛽)′′

𝑓𝛽(𝜑𝛽)
)

′

+ (𝑓𝛽(𝜑𝛽)𝑇𝛽(𝜑𝛽)′)]
′

+
𝑇𝛽(𝜑𝛽)′′

𝑓𝛽(𝜑𝛽)
= 0}   (16) 

 

    where 

 

𝑓𝛼(𝜑𝛼) =
𝜏𝛼(𝜑𝛼)

𝜅𝛼(𝜑𝛼)
 ,  𝑔𝛼(𝜑𝛼) =

σ𝛼(𝜑𝛼)

𝜅𝛼(𝜑𝛼)
 , 𝜑𝛼 = ∫ 𝜅𝛼(𝑠𝛼), 

 𝑓𝛽(𝜑𝛽) =
𝜏𝛽(𝜑𝛽)

𝜅𝛽(𝜑𝛽)
,  𝑔𝛽(𝜑𝛽) =

σ𝛽(𝜑𝛽)

𝜅𝛽(𝜑𝛽)
 , 𝜑𝛽 = ∫ 𝜅β(𝑠β) 

    Equation (13) causes 

𝑓𝛼(𝜑𝛼) =  𝑓𝛽(𝜑𝛽),  𝑔𝛼(𝜑𝛼) =  𝑔𝛽(𝜑𝛽) 

under the variable transformations  𝜑𝛽 = 𝜑𝛼. So that equations (15) and (16) under the equation (13) and 

the transformation  

𝜑𝛽 = ∫ 𝜅β(𝑠β) = ∫ 𝜅𝛼(𝑠𝛼) 

are the same. Hence the solution is the same, i.e., the tangent vectors are the same which completes the 

proof of the theorem. 

Theorem:Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)    be real curves in 4D-Galilean space. Then ξ

α
(𝑠𝛼)  and  ξ

β
(𝑠β)      are 

similar curves with variable transformation if and only if the Frenet vectors 𝐸𝛼(𝑠𝛼)  and 𝐸𝛽(𝑠β) of curves 

are the same for all curves 

𝐸𝛼(𝑠𝛼) = 𝐸𝛽(𝑠β)      (17) 

              under the particular variable transformation 

 

𝜆𝛼
β

=
𝑑𝑠β

𝑑𝑠𝛼
=

𝜏𝛼

𝜏β
=

σα

σβ
     (18) 

of the arc-lengths. 
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Proof: Let ξ
α
(𝑠𝛼)  and  ξ

β
(𝑠β)     be real quaternionic curves with variable transformation. Then from 

Theorem.4, we have 𝐵(𝑠𝛼)   = 𝐵(𝑠β).  Differentiating this equality with respect to 𝑠β gives 

−𝜏𝛽(𝑠β)Nβ(𝑠β) + σ𝛽(𝑠β)Eβ(𝑠β) = {−𝜏𝛼(𝑠𝛼)Nα(𝑠𝛼) + σα(𝑠α)Eα(𝑠α)}
𝑑𝑠𝛼

𝑑𝑠β
     (19) 

  

𝜆𝛼
β

=
𝑑𝑠β

𝑑𝑠𝛼
=

𝜏𝛼

𝜏β
=

σα

σβ
 

Considering equation (19) and (8), we have 

 

𝐸𝛼(𝑠𝛼) = 𝐸𝛽(𝑠β)  and   𝜆𝛼
β

=
𝑑𝑠β

𝑑𝑠𝛼
=

𝜏𝛼

𝜏β
=

σα

σβ
      (20) 

 

    Conversely, let ξ
α
(𝑠𝛼) and  ξ

β
(𝑠β)  be real quaternionic curves with variable transformation.satisfying 

(17) and (18). Differentiating (17) with respect to 𝑠β it follows 

 

σβ(𝑠β)𝐵
𝛽

(𝑠β) =
𝑑𝑠𝛼

𝑑𝑠β

σα(𝑠𝛼)𝐵
𝛼

(𝑠𝛼) 

             From (18) we see that  

 

  𝐵𝛼(𝑠𝛼) = 𝐵β(𝑠β). 

 

Then by theorem 4, we obtain that ξ
α
(𝑠𝛼) and  ξ

β
(𝑠β)   are regular similar curves in 4D-Galilean space 

with variable transformation . 

Example: Let 𝜉(𝑠) = (𝑠, (
√3

2
) 𝑠, arctan 𝑠 − (

𝑠

2
) , 𝐼𝑛√1 + 𝑠2) be real curve , 𝜉(𝑠) forms a family of similar 

curves in 4D-Galilean space with variable transformations. 

 Proof: The natural representation of 𝜉(𝑠) can be written in the form: 

ξ
α
(𝑢) = (𝑢, (

√3

2
) 𝑢, arctan 𝑢 − (

𝑢

2
) , 𝐼𝑛√1 + 𝑢2).     (21) 

 

Where 𝑠𝛼 = 𝑢 is arclength of the 𝜉 and the curvature is κα(𝑢)=1. Differentiating  ( 21 ), we have 

ξ′
α
(𝑢) = (1,

√3

2
,

1

1 + 𝑢2
−

1

2
, −

𝑢

1 + 𝑢2). 
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Galilean inner product follows that 〈 𝜉′, 𝜉′ 〉𝐺₄ = 1. Thus the curve is paremeterized by arclength and 

tangent vector takes the form: 

T′α(𝑢) = (1,
√3

2
,

1

1+𝑢2
−

1

2
, −

𝑢

1+𝑢2).      (22) 

From theorem 1, we can write as the following: 

𝛾β(𝑠)
= ∫ (1, (

√3

2
) , (

1

1 + (𝑢(𝑠))
2) − (

1

2
) , − (

𝑢(𝑠)

1 + (𝑢(𝑠))
2)) 𝑑𝑠. 

 

where (𝑠β) = 𝑠. From the equation (18), we have 

𝑑𝑠𝛼 = 𝜆𝛽
𝛼𝑑𝑠β = (

𝜅β

𝜅𝛼
) 𝑑𝑠β    or  𝑠𝛼(𝑠β) = ∫ (

𝜅β

𝜅𝛼
) 𝑑𝑠β.    (23) 

If we put the curvature 𝜅β = κ(s) (𝑠β = s), we have 

𝑢(𝑠) = ∫ 𝜅(𝑠)𝑑𝑠. 

The the position vector of ξ with arbitrary curvature κ(s) takes the following form: 

𝜉(𝑠) = ∫ (1, (
√3

2
) , (

1

1 + (∫ 𝜅(𝑠)𝑑𝑠)
2) − (

1

2
) , − (

∫ 𝜅(𝑠)𝑑𝑠

1 + (∫ 𝜅(𝑠)𝑑𝑠)
2)) 𝑑𝑠. 

which is the position vector of 𝜉 . The principal normal vectors of (21) take the form: 

𝑁(𝑢) = (0, 0, − (
2

(1 + 𝑢2)2
) , (

𝑢2 − 1

(1 + 𝑢2)2
)). 

Besides, it is easy to write the tangent vector (22) in the simple form: 

𝑇{𝛼}(𝑢) = ∫ 𝑁(𝑢)𝑑𝑢 = ∫ (cosh 𝑢 , 0, sinh 𝑢 , 0)𝑑𝑢. 

From theorem 1, we can write the position vector of a similar curve ξ
β
(𝑠)   = (𝜉₁(𝑠), 𝜉₂(𝑠), 𝜉₃(𝑠), 𝜉₄(𝑠)) 

with arbitrary curvature κ(s) as follows: 

ξ
β
(𝑠)  = ∫ {0, 0, −

2

(1+(∫ 𝜅(𝑠)𝑑𝑠)
2

)
2 ,

(∫ 𝜅(𝑠)𝑑𝑠)
2

−1

(1+(∫ 𝜅(𝑠)𝑑𝑠)
2

)
2} 𝑑𝑠.      (24) 

Corollary: The family of real curves in 4D-Galilean space with vanishing principal curvature 𝜅  forms a           

family of real similar curves with variable transformation. 

Corollary: The family of real curves in 4D-Galilean space with vanishing torsion 𝜏 forms a family of real 

similar curves with variable transformation. 

Journal Of Mathematics                  ISSN: 2455-9210

Volume 2 Isuue 5 May 2016   8 



Corollary: The family of real curves in 4D-Galilean space with vanishing bitorsion σ forms a family of 

real similar curves with variable transformation. 

Conclusion: In 4D-Galilean space, the similar curves are defined and some properties of these curves are 

obtained. It is shown that real curves with vanishing curvatures form the families of similar curves 

  [1]  Hamilton, W.R., Element of Quaternions, I, II and III, chelsea, New YORK, 1899. 

[2] B. O Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press Inc., London, 

1983. 

[3] Izumiya, S. and Takeuchi, N. Generic properties of helices and Bertrand curves. J. Geom., 2002, 74, 

97-109. 

[4] A. O. Ogrenmis, H. Öztekin and M. Ergüt Bertrand curves in Galilean space and Their 

Characterizations. Kragujevac J. mATH. 32 (2009) 139-147. 

[5] M. A. Güngör, M. Tosun, Some characterizations of quaternionic rectifying curves, Diff.Geom. Dyn. 

Syst., Vol.13, (2011), 89-100. 

[6] J.P. Ward, Quaternions and Cayley Numbers, Kluwer Academic Publishers, Boston/London, 1997. 

[7]  S. Yılmaz, Construction of the Frenet-Serret frame of a curve in 4D Galilean space and some 

applications, Int. J. of the Ph. sci. vol5(8), pp. 1284-1289,(2010). 

[8] A. T. Ali, Position vectors of general helices in Euclidean 3-space, Bull. Math. Anal. Appl.3(2), (2010), 

198--205. 

[9] K. I larslan and O. Boyacioglu: Position vectors of a spacelike W-curve in Minkowski space 𝐸1
3 , Bull. 

Korean Math. Soc. 44(2007), 429-438. 

[10]  Struik, D.J. Lectures on Classical Differential Geometry. 2nd end. Addison Wesley, Dover, 1998. 

Journal Of Mathematics                  ISSN: 2455-9210

Volume 2 Isuue 5 May 2016   9 




