Note on THE I-TRANSLATIVITY OF Matrix Based on Convergent Infinite Geometric Series

Mulatu Lemma and Keith Fuller Department of Mathematics Savannah State University Savannah, GA 31404 USA

Abstract: The infinite Geometric Series is a series of the form $\sum_{k=0}^{\infty} ax^k$. The

geometric power series $\sum_{k=0}^{\infty} ax^k$ converges for |x| < 1 and is equal to $\frac{a}{1-x}$.

Let g be sequence in (0, 1) that converges to 1. The matrix based on convergent infinite geometric series defined as $a_{nk} = (1 - g_n)g_n^{k}$. We denote this matrix by M_g and name it geometric matrix. M_g is a sequence to sequence mapping. When a matrix M_g is applied to a sequence x, we get a new sequence $M_g x$ whose nth term is given by:

$$(M_g x)_n = (1 - g_n) \sum_{k=0}^{\infty} g_n^{k} x_k$$

The sequence $M_{g} x$ is called the M_{g} -transform of the sequence x.

The M_g matrix was introduced by Madison Hankson, Tiffany Northcut and Mulatu Lemma in (1).

1. Basic notation and definitions. Let $A = (a_{nk})$ be an infinite matrix defining a sequence to a sequence summability transformation given by

$$(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k$$

Volume-3 | Issue-11 | November, 2017 | Paper-3

26

(2.1)

Where $(Ax)_n$ denotes the *n*th term of the image sequence Ax. Let *y* be a complex number sequence. Throughout this paper, we use the following basic notations and definitions:

i. $c = \{$ the set of all convergent complex number sequences $\}$

ii.
$$l = \{y : \sum_{k=0}^{\infty} |y_k| converges\}$$

iii.
$$l(A) = \{y : Ay \in \ell\}$$

iV. $c(A) = \{y : y \text{ is summable by } A\}$

Definition 1. If X and Y are sets of complex number sequences, then the matrix A is called an x_{-Y} matrix if the image Au of u under the transformation A is in Y whenever u is in X.

Definition 2. The summability matrix A is said to be 1translative for the sequence u in $\ell(A)$ provided that each of the sequences T_u and S_u is in $\ell(A)$, where $T_u = \{u_1, u_2, u_3, ...\}$ and $S_u = \{0, u_0, u_1, ...\}$.

2. The main results **Proposition 1**.

$$M_g$$
 is $\ell - \ell \Leftrightarrow (1-g) \in \ell$

Lemma 1:

$$M_g is_{\ell} - \ell \Longrightarrow (1-g) \in \ell$$

Proof: We use the Knopp-Lorentz Rule:

$$M_g is \quad \ell - \ell \implies$$
$$\sum_{n=0}^{\infty} \left| (1 - g_n) g_n^k \right| \le M$$

$$\sum_{n=0}^{\infty} \left| (1-g_n) \right| \le M \quad \text{(for k=0)}$$

$$\implies (1-g) \in \ell$$

Lemma 2:

$$1-g \in \ell \Longrightarrow M_g isl-l$$

Proof: We use the Knopp-Lorentz Rule:

$$\sum_{n=0}^{\infty} |a_{nk}| \leq \sum_{n=0}^{\infty} |(1-g_n)g_n^k|$$
$$\leq \sum_{n=0}^{\infty} (1-g_n) \leq M \text{ for some M>0 as}$$
$$(1-g) \in \ell$$

Now Proposition 1 follows by Lemmas 1&2.

Proposition 2. Every *l*-*l* G_g matrix is *l*-translative for each sequence $x \in \ell$.

Theorem 1. Every *l*-*l* G_g matrix is is *l*-translative for those sequences for which $x \in l(G_g)$, k=1,2,3,4.....

Proof. Suppose that x is a sequence in $l(G_g)$. We show that (1) $T_x \in l(G_g)$, and

(2) $S_x \in l(G_g)$, where T_X and S_X are as defined in Definition 2.

Let us first show that (1) holds. Note that

$$(M_{g}T_{x})_{n} = (1-t_{n}) \sum_{k=0}^{\infty} x_{k+1}t_{n}^{k}$$
$$= \frac{(1-t_{n})}{t_{n}} \sum_{k=0}^{\infty} x_{k+1}t_{n}^{k+1}$$
$$= \frac{(1-t_{n})}{t_{n}} \sum_{k=1}^{\infty} x_{k}t_{n}^{k}$$

0

 $A_n = \frac{(1-t_n)}{t_n} \left| \sum_{k=1}^{\infty} x_k t_n^k \right|$

Now the conditions that $A \in l$ follows from $x \in l(M_g)$. Next, we show that (2) holds as follows. We have

$$|(M_{g}S_{x})_{n}| = (1 - t_{n}) \left| \sum_{k=1}^{\infty} x_{k-1}t_{n}^{k} \right|$$
$$= (1 - t_{n}) \left| \sum_{k=0}^{\infty} x_{k}t_{n}^{k+1} \right|$$
et
$$E_{n} = t_{n}(1 - t_{n}) \left| \sum_{k=0}^{\infty} x_{k}t_{n}^{k} \right|$$

L

But the hypothesis that $x \in l(G_g)$ implies that E is in ℓ . Hence the theorem follows.

Here, we remark that a sequence x defined by $x_k = (-1)^k$ is one of the sequences which satisfies the condition of Theorem 1.

Corollary 1. Every l = l g matrix is *l*-translative for the class of all sequence x whose partial sum is bounded.

Proof. By [3, Thm. 8], x is in $\ell(G_g)$. Hence the assertion follows by Theorem 1.

Corollary 2. Every $\ell - \ell$ G_g matrix is *l*-translative for the

unbounded sequence x defined by $X_k = (-1)^k (k+1)$

Volume-3 | Issue-11 | November, 2017 | Paper-3

Proof.

.Note that

$$(M_g x)_n = \sum_{k=0}^{\infty} (1 - g_n) g_n^k (-1)^k (k+1)$$

$$= (1 - g_n) \sum_{k=0}^{\infty} g_n^k (-1)^k (k+1)$$

~~

$$= (1 - g_n) \sum_{k=0}^{\infty} (-g_n)^k (k+1)$$

$$= \frac{1 - g_n}{(1 + g_n)^2} \le (1 - g_n)$$

Now $M_{\mathfrak{s}}$ matrix is $l \cdot l \Rightarrow (1 \cdot g) \in l$, by Proportion 1 and hence $M_g x \in l$.

Now since $x \in \ell(G_g)$, the corollary easily follows by Theorem 1.

Special Thanks to:

- 1. Aster Debebe
- 2. Sara Fuller
- 3. Andrew Fuller
- 4. Samera Mulatu
- 5. Abyssinia Mulatu
- 6. Shalonda Millidge

References

- Madison Hankinson, Tiffany Northcutt, and Mulatu Lemma, Matrix Based on Infinite Convergent Geometric series, *Advances* and Applications in Mathematical Sciences, Volume13, issue 2(2014), pages 195-202)
- D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318–322. <u>MR 19,134f. Zbl</u> 082.27602.
- J. A. Fridy, Abel transformations into I¹, Canad. Math. Bull.
 25 (1982), no. 4, 421–427.<u>MR 84d:40009. Zbl 494.40002.</u>
- 4. M Lemma, *The Abel- type transformations into l*, the Internat.J. Math. Math. Sci.
- M. Lemma, Logarithmic transformations into l¹, Rocky Mountain J. Math. 28 (1998), no. 1, 253–266. <u>MR 99k:40004. Zbl</u> <u>922.40007.</u>