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Abstract. At first, here a generalize method of iteration is proposed, presented as a 

combination of the classical iteration and proportional division methods, on which the 

conditions of Bolzano-Cauchy theorem are satisfied. Аn evidence of the proposed algorithm 

convergence is brought. Originally, a generalize contraction mapping is considered as a 

function from one variable for which a theorem about iteration convergence and its evidence 

are brought. Secondly, in this article a variant of the generalize method of iteration – a 

nonlinear-generalize method of iteration – is developed. A new geometrical interpretation of 

the convergence of the generalize method of iteration is brought: three cases of step, spiral 

and hyper-step iterations are estimated and their convergence sub-regions are considered. 

An explicit formula of nonlinear-generalize contraction mapping operator as a function from 

one real variable is obtained; a formulation of the nonlinear-generalize contraction mapping 

as a function from complex and some real variables are also explicitly exposed. As a result, 

an aggregate method of iteration is formulated. On examples of some transcendent 

equations systems solution an advantage of this method compared to such known methods 

as the classical iteration method and the Newton’s method is proved.   

Keywords: generalize and nonlinear methods of iteration, contraction mapping, 

nonlinear-generalize contraction mapping, contractible original, convergence, fixed point, 

aggregate method of iteration, convergence, transcendent equations systems. 

 

1. Introduction. In the publications [1 – 5] the full justification of a theoretical 

correctness and applied efficiency of the generalize method of iteration (GMI), concerned to 

nonlinear algebraic and transcendent equations solutions, were given. Moreover, as was showed 

in the works [3 - 5], the GMI can be qualified as more efficient numerical method of nonlinear 

algebraic, transcendent and differential equations solutions than such methods as the methods of 

tangent (Newton method), of secant and the combined method. 

In the present article an extension of traditional ideas about the contraction mapping 

[6], as the fundamental principle of algebraic, transcendent and differential equations solution by 

successive approximations principle, is planned. Here is proposed a nonlinear generalization of 

the operator of contraction mapping that serve a theoretical basis for a new correct and complete 

methodology destined to any complexity nonlinear equations and systems numerical solution. 
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2. Original idea of generalization of the method of iteration. As an illustration of 

the original idea for the generalization of the classical method of iteration, first of all let as give 

the algorithm of the numerical solution of nonlinear algebraic equations, initially presented in 

[1], later named modernize method of iteration (MMI) [2]: 

 

1. Specification of an initial approximation 0x [a,b] ; 

2. Computation of 1 0x (x )  ; 

3. Computation of 0 1
2

x x
x

2


 ; 

4. Calculation of 3 2x (x )  ; 

5. Computation of 2 3
4

x x
x

2


  etc. 

 

For the proof of the process convergence the known estimate [7] is used: 

 

1 0 01. x (x ) ( ) q x , q 1;         

0 1
2 0 1

0 1 0 0

0

x x 1
2. x (x ) (x )

2 2

1 1 1 1
x x x q x

2 2 2 2

1
(q 1) x ,

2


       

        

  

 

 

after which it’s not difficult to find the estimate for the n – th iteration 
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For a sufficiently large n, the last two estimates can be replaced by the expression 
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By virtue q 1  for the classical iteration, it follows that 
q 1

1,
2


  i.e. 3 q 1   , 

which confirms the convergence of the iteration process. 

 

3. Nonlinear-generalize contraction mapping as a function from one variable. A  

view to illustrate a new generalization of traditional contraction mapping operator let us consider 

its primarily in the form of simple function from one variable. 

As it’s known [6], an arbitrary function (x)   , satisfying the Lipchitz condition: 

(x) x  , if 1q0forxxq)x()x( 2121  , is called contraction mapping.  

Introducing the function as a generalize contraction mapping: 

 






x)1()x(
)x( ,                                                  (3.1) 

 

one can prove that practically for any function (x)   , it is a classical contraction mapping in 

the complete metric space R , i.e.
 

'(x) q 1   . 

 

Theorem. Let the function  x  is continuous and differentiable in the interval 

 ,a b , moreover for all its values one has    ,x a b  . Then if there exists a proper fraction q , 

such that 

 1
1

x
q

  
 


                                                     (3.2)  

for a x b   and R , then the generalize process of the iteration 

   1 11
, 1,2,...

n n

n

x x
x n

   
 


                                       (3.3) 

converges, independent from the initial value  0 ,x a b , to the limiting value 

lim ,n
n

x


                                                                  (3.4) 

which is a unique root for the equation 
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   0, or ,f x x x  
 

(3.5) 

in the interval  ,a b , where the condition of the Bolzano-Cauchy theorem on the existence of an 

isolated root (3.4) of the equation (3.5) is satisfied:     0f a f b  . 

 

Proof. Let us consider two successive approximations: 

       1 1

1

1 1
and ,

n n n n

n n
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from which it follows that 

        1 1 11 .n n n n n nx x x x x x            

Applying the Lagrange’s theorem, we get 

          1 1 1 11 , , ;n n n n n n n n n nx x x x x x x x x x   
           

i.e. 

 
1 1

1
,

n

n n n n

x
x x x x 

   
  


 

or, by taking into account the condition (3.2), 

1 1 .n n n nx x q x x                                                        (3.6) 

From here giving the values 1,2,...,n   successively one can obtain 

2 1 1 0
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Consider the series 

     0 1 0 2 1 1... ...,n nx x x x x x x                                    (3.7) 

for which the successive approximations nx  are the  1n  -th partial sums, i.e. 1.n nx S   

By virtue inequality (3.6) the terms of series (3.7) by the absolute value are less than 

the corresponding terms of the geometrical progression with the denominator 1q  . Therefore 

the series (3.7) converges absolutely. And from here it follows that for a continuous function 

 x  there is the limit: 
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which unlimitedly is equivalent to the results      , from which it follows that   is a root of 

the equation (3.5), what was required to prove. 

 

 

 

 

Fig. 1. Geometrical interpretation of convergence of the GMI 
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The presence of the variable parameter R  in the formula (3.1), which is selected 

by one single criterion of fastest possible convergence of numerical solutions, as it will be seen 

from examples, extends the field of application of the presented iteration process. It has been 

called generalize method of iteration. 

Let us consider the geometrical interpretation of the GMI, as a result of which, in par-

ticular, is specified the parameter  . 

For points sufficiently close to the root x , where the assimilation of the tangent at 

the points 210 xandx,x  is allowed, i.e.  tg)x()x()x( 210 , for the spiral iteration 

in fig. 1, (а), from the one side the fallowing equalities take place:   

  

.0tg,tg)xx(xxor,tg
p

p

BC

AB

BC

BO
2012

2

1   

 

From the other side, for the steps (fig. 1, b) and an hyper-steps (fig. 1, c) iterations is 

valid the relation 

 

.0tg,tg)xx(xx 2021   

 

Consequently, taking into account the notation  1tg , the assumption on the 

completeness of the metric space R is confirmed, and with that the justification of the initial 

expression (3.1) for the generalize contraction mapping assuming the validity of the condition of 

existence and uniqueness of fixed-point (the theorem of Banach) in R [6], which allows to 

reformulate the operator of the nonlinear contraction mapping in the final form: 

 

)x(1

x)x()x(
)x(




 .                                                      (3.8) 

 

As a nonlinear method of iteration (NMI) here and later well be implied the particular 

case of the GMI, when the parameter   is determined by the following formula: 

 

).x(1                                                             (3.9) 

 

For the cases (a) and (b) we get: 
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For the case (c) we get: 
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(x) 2 1; (for hyper-steps iteration [3] 

(x) 1. at  1 (x) 2 1);

   
 

       
 

 

 

Fig. 2. Representation of convergence sub-regions of the GMI 

 

So, from the above-mentioned derivations is becomes clear, that taking a sufficiently 

large by the absolute value number R  , i.e. for   , all three sub-regions of the conver-

gence [4] (fig. 2, а and b) covered practically all the spectrum of possible variations of the tan-

gents on the plane, which was required to prove. For here it follows, that the operator )x(  is a 

nonlinear-generalize contraction mapping with contractible original
 

(x)  (fig. 3). 
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Fig. 3. Nonlinear-generalize contraction mapping Φ(x) with contractible original ψ(x)  

 

4. Nonlinear-generalize contraction mapping as a function from some variables. 

In the space nE  one introduce a canonic norm x , expressed by one of the following norms [7]: 
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In this case the mapping 

 

1q0,xxq)x()x( 2121 


 

 

can be classified as a nonlinear-generalize one in the space nE . Therefore, by the introduced 

operator of nonlinear mapping 


 in nE  all the known theorems will be formally valid out [7], 

proofed for the classical operator of the contractible mapping 


 in nE . 

On the base of the forgoing the formalization is allowed for the nonlinear operator of 

the contraction mapping 


 in the space nE  as an operator, providing the contraction of an 

arbitrary contractible original 


 to the fixed-point, i.e. 
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where E


 is the unit matrix and )x(


  is the Jacobs matrix of the vector-function for the contrac-

tible original )x(


 , namely, 
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It is known [8], that in the two forms of the presentation of the system of equations 

(x) x   and f (x) 0  the vector-functions (x)  and f (x)  are related by the transformations: 

 









,E)x(f)x(

;x)x(f)x(




                                                     
)4.4(

)3.4(
                                             

 

whereby the transition is realized from the formulation of the vector-operator of the contraction 

mapping 


 valuated to the statement of the problem on the fixed-point to the formulation of the 

same nonlinear-generalize operator 


 in the space nE  in the context of the solution of the 

problem about the zeros. 

Consequently, 

 

1 1(x) x [f (x)] f (x) x [J(x)] f (x)        ,                                    (4.5) 

 

where J(x)  is the Jacobs matrix of the vector-function f (x) , from which, by assuming the fun-

damental equality (x) x  , it can be ascertained in the coincidence of the expressions for the 

vector operator of the nonlinear-generalize contraction mapping 


 and for the principal recur-

sive dependence of the classical method of Newton for the system of equations in real roots [7]: 

 

.,...,2,1k),x(f)]x(J[x)x(f)]x(J[xx k
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5. Nonlinear-generalize mapping on the complex plane. On the bases of the 

preliminary formula (3.1) it is not difficult to conclude, that the parameter   in the expression 

for the scalar operator of the nonlinear-generalize mapping (3.8) one take not only real, but also 

complex values. So, from the mathematical point of view it is completely legitimate definition of 

the scalar operator for nonlinear-generalize contraction mapping   in the complex space C : 

 

)(x1where,
x)1()x(

)x( 




 




                        (5.1) 

 

with 

 

.1iwhere,iandiyy)x(,ixxx iririr    

 

Then the iteration process NIM for the computation of the complex root of the 

equation (x) x   will be expressed by the following recursive dependence: 

 

k k k
k 1

k

(x ) ( 1)x
x , k 0,1,2,... ,

  


 

   
 


                                        (5.2) 

 

which is equivalent to the system of two independent recursive equations, i.e. 
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or, in the matrix form of the presentation,  
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As in the case for real roots, the formulation of NIM for the case of complex roots by 

taking into account the transformations 

 












1)x(f)x(

;x)x(f)x(
                                                    

)6.5(

)5.5(
 

 

is also reduced to the main recursive dependence of the Newton method for the complex roots 

[7]:  

 

1

k 1 k k kx x J (x ) f (x ), k 0,1,2,... .    

                                           (5.7) 

 

6. Aggregate method of iteration. Now we can formulate an aggregate method of 

iteration (AIM) composed on the base of the formulation of the GMI and the NMI for the 

problem about the zeros of the numerical solution of nonlinear algebraic and transcendental 

equations systems [3]: 
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7. Examples of the numerical realization. As a first example we consider the case 

of the numerical solution of the transcendental equation in complex roots, where the problem оf 

the stability of a multi layered base is investigated [9]:  

 

p tgp 1 i p,     where 1 2p p ip  ,                                          (7.1) 

 

where   and   are parameters, taking the following values: 0, 1, 10   and 0; 0,1  . The 

equation (7.1) in complex roots can be transformed to the system of two transcendental equations 

for real roots: 

 

1 1 2 2 1 1 2 2

1 2 2 1 1 1 2 2 1 2

p tgp p thp 1 p tgp thp p ,

p thp p tgp p tgp thp p tgp thp .

      

        

                             (7.2) 
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                            Fig. 4.                                                                       Fig. 5.       

          Dependence optλ  on initial                                       Dependence optλ  on initial 

    approximation with 0β0,1;α                          approximation with 0,1β10;α   

 

In fig. 4 and 5 the optimal values of the parameter optλ  are given for the achieving of 

convergence of numerical results of the presented example solved by the GIM for complex roots 

in dependence of initial approximation 0

1p  and 0

2p . It is necessary to note that in the calculation 

the simplification rir i    is accepted which does not lead out the error of numerical 

calculations beyond 5% the accuracy of the generation of numerical results is of numerical 

results is 5
10


 . Similar tables one can obtained for arbitrary pairs of the values of   and  . 

It’s also necessary to note that the calculations of the examples by the NIM (Newton method) for 

the complex root generates the results, not exceeding by convergence velocity the results, 

indicated in fig. 4 and 5, its error is near 5%. 

It is necessary to pay the attention on the circumstance, that the attempt to solve the 

test example by the Newton method (GMI) for real roots and by other methods of numerical 

solution do not lead to satisfactory results to find the roots. 

As a second example of the algorithmic solution of a system of nonlinear equations 

we choose the system of quasi transcendental equations, i.e. of the equation, having an analytical 

solution, for some particular case of the Collatz conjecture (conjecture of Syracuse) [10].  

This system of equations, assuming for 1k5k13k 210 ,,   the single solution in 

natural numbers, has the following form: 
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                                           (7.3) 

 

In fig. 6 and 7 the dependences the number of iterations is given on initial approxima-

tion of the parameters 
21 and   for the indicated system of equations for 20  and 10

10


 . 

Along with this in fig. 8 the surface is illustrated characterizing the ratio of the iteration numbers, 

generated on the base of NIM (Newton method) and AIM respectively.  

 

 

                               Fig. 6.                                                                        Fig. 7.       

          Dependence iteration numbers                               Dependence iteration numbers  

      on original approximation by AMI                         on original approximation by NIM               

 

 

Fig. 8. Ratio of the iteration numbers by NIM and AMI 
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The offered problem solved for the three quasi transcendental equations also, for 

which is bring to light to the some order of the advance by convergence velocity of NIM and 

AIM, which is illustrated on the fig. 8 for the case of two equations. 

 

8. Conclusion. The generalize method of iteration presented as a hybrid of a classic 

method of iteration and of the method of proportional division of the interval, on which satisfied 

the conditions of the theorem of Bolzano-Cauchy, is formulated. The proof of the convergence 

of proposed algorithm is brought. At first, the operator of the contraction mapping as a function 

from one variable is considered. The theorem about convergence giving iteration and its 

evidence are shown. The cases as the steps, spiral and also an hyper-steps iterations were 

considered. A geometrical illustration of the GMI was finally exposed. 

The nonlinear iteration method is formulated on the base of the obtained nonlinear 

operators of the scalar and vector contraction mapping as a function from one and also for any 

finite number of several real variables. Also the formulation of the nonlinear-generalize contrac-

tion mapping in the complex space is taking into account. It is shown that the NIM is equivalent 

to the classical Newton method for real and complex roots. 

Finally, the aggregate method of iteration, composed by GMI and NMI, is formulated 

for the problem about the zeros as the most effective nonlinear algebraic and transcendental 

equations systems numerical solutions hybrid strategy. 

On the basis of solution of the two nonlinear equations systems of the transcendental 

equations the expected efficiency of the AIM with respect to other known methods is proved.  
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