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Abstract

In this study, we solve the Kolmogorov equation by a compact finite difference method.

We apply a compact finite difference approximation for discretizing spatial derivatives.

Then, using cubic C1-spline collocation technique, we solve the time integration of the

resulting system of ordinary differential equations. This joined method has fourth-order

accuracy in both space and time variables, that is this method is of order O(h4, k4). The

numerical results confirm the validity of this method.
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1. Introduction

In probability theory, Kolmogorov equations, including Kolmogorov forward equations and

Kolmogorov backward equations are partial differential equations that arise in the theory of

continuous-time continuous-state Markov processes t characterize random dynamic processes.

In one variable case the Kolmogorov equation is written in the following form

∂u(x, t)

∂t
=

(
−A(x, t) ∂

∂x
+B(x, t)

∂2

∂x2

)
u(x, t)

(x, t) ∈ [a, b]× [0, T ]

(1.1)

with initial condition

u(x, 0) = φ(x),

and the boundary conditions

u(a, t) = ψ1(t) , u(b, t) = ψ2(t) , t ⩾ 0,

where B(x, t) ̸= 0 for all (x, t) ∈ [a, b] × [0, T ], and A(x, t) and B(x, t) are the continuous and

differentiable functions. We assume that ψ1 and ψ2 are smooth functions.

The basic approach for high-order compact difference methods is to introduce the stan-

dard compact difference approximations to the differential equations and then by repeated

differentiation and associated compact differencing, a new high-order compact scheme will be

http://www.global-sci.org/jcm Global Science Preprint
1) Corresponding author

IJRDO-Journal Of Mathematics ISSN: 2455-9210

Volume-2 | Issue-7 | July,2016 | Paper-1 1 



2

developed that incorporates the effect of the leading truncation error terms in the standard

method [7]. Recently due to the high-order, compactness and high resolution, we have seen in-

creasing population for high-order compact difference methods in computational fluid dynamics,

computational acoustics and electromagnetic [6, 7, 1].

2. Method of solution

In this section we will combine second-order central difference in space with cubic C1-spline

collocation method to obtain a high order method for solving the Kolmogorov equation (1.1).

At first we discretize partial differential equation (1.1) in space with central difference to obtain

a system of ordinary differential equations with unknown function at each spatial grid point.

Then we will apply the cubic C1-spline collocation method for solving the resulting system of

ordinary differential equations. For positive integers n and T , let h = b−a
n denotes the step size

of spatial derivatives and k denotes the step size of temporal derivative. So we define

xr = a+ rh , r = 0, 1, · · · , n,
tj = jk , j = 0, 1, · · · .

Consider the following partial differential equation

f(x) = −A(x, t)∂u
∂x

+B(x, t)
∂2u

∂x2
. (2.1)

If we denote the central difference schemes of order two for second and first derivatives of u as

δ2xu = ur+1−2ur+ur−1

h2 and δxu = ur+1−ur−1

2h , respectively, then we have the following relation for

equation (2.1) at point xr:

fr = −Arδxur +Brδ
2
xur − τr, (2.2)

in which Br = B(xr, t) and Ar = A(xr, t). The truncation error τr is as follows:

τr =
h2

12
Br

∂4u

∂x4
− 2Ar

h2

12

∂3u

∂x3
+O(h4). (2.3)

In order to obtain a fourth-order scheme, the fourth and third derivatives of u in (2.3) should

be approximated. equation (2.1) gives:

∂3u

∂x3
=

1

B

(
∂f

∂x
+
∂A

∂x

∂u

∂x
+
∂2u

∂x2

(
A− ∂B

∂x

))
. (2.4)

Also from (2.4) we have

∂4u

∂x4
=

1

B

(
∂2f

∂x2
+
∂2A

∂x2
∂u

∂x
+
∂2u

∂x2

(
2
∂A

∂x
− ∂2B

∂x2

)
+

(
∂3u

∂x3

)(
A− 2

∂B

∂x

))
. (2.5)

By equations (2.2), (2.3), (2.4) and (2.5) for r = 0, · · ·n− 1 we get

fr = −Ar
∂u

∂x
+Br

∂2u

∂x2
− h2

12

∂2f

∂x2

∣∣∣∣
r

− h2

12Br

(
−A− 2

∂B

∂x

)
r

∂f

∂x

∣∣∣∣
r

−∂u
∂x

(
h2

12

∂2A

∂x2
+
h2

12

(
−A− 2

∂B

∂x

)
∂A

∂x

)∣∣∣∣
r

− ∂2u

∂x2

(
h2

12

(
2
∂A

∂x
− ∂2B

∂x2

)
+

h2

12B

(
−A− 2

∂B

∂x

)(
A− ∂B

∂x

))∣∣∣∣
r

.

(2.6)
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Now we rewrite the equation(1.1) for r = 0, · · ·n− 1 as follows

fr +
h2

12

∂2f

∂x2

∣∣∣∣
r

− h2

12Br

(
A+ 2

∂B

∂x

)
r

∂f

∂x

∣∣∣∣
r

=

−∂u
∂x

(
−A− h2

12

∂2A

∂x2
− h2

12

(
−A− 2

∂B

∂x

)
∂A

∂x

)∣∣∣∣
r

+
∂2u

∂x2

(
B − h2

12

(
2
∂A

∂x
− ∂2B

∂x2

)
− h2

12B

(
−A− 2

∂B

∂x

)(
A− ∂B

∂x

))∣∣∣∣
r

.

(2.7)

Which this relation is a fourth-order compact finite difference scheme for equation (2.1). If we

discretize the above equation with second-order central difference in space and each grid point,

we obtained the following relation:

ur
′ +

h2

12

ur+1
′ − 2ur

′ + ur−1
′

h2
− h2

12Br

(
A− 2

∂B

∂x

)
r

ur+1
′ − ur−1

′

2h

=
ur+1 − ur−1

2h
P (1)
r +

ur+1 − 2ur + ur−1

h2
P (2)
r .

(2.8)

In which

Pr
(1) = −Ar −

h2

12

∂2A

∂x2

∣∣∣∣
r

− h2

12

(
−A− 2

∂B

∂x

)
r

∂A

∂x

∣∣∣∣
2

,

Pr
(2) = Br −

h2

12

(
2
∂A

∂x
− ∂2B

∂x2

)
r

− h2

12Br

(
−A− 2

∂B

∂x

)
r

(
A− ∂B

∂x

)
r

.

and

ur(t) = u(xr, t) , u′r(t) =
∂u
∂t (xr, t).

Then we rewrite the equation (2.8) as follows:

ur−1
′
(

1

12
+

hA

24B
+

h

12B

∂B

∂x

)
r

+ ur
′
(
5

6

)
+ ur+1

′
(

1

12
− hA

24B
− h

12B

∂B

∂x

)
r

= ur−1

(
Pr

(2)

h2
− Pr

(1)

2h

)
+ ur

(
−2Pr

(2)

h2

)
+ ur+1

(
Pr

(2)

h2
+
Pr

(1)

2h

)
,

(2.9)

If we write (2.9) for each grid point we obtain a system of ordinary differential equations which

is as follows:

Ru′(t) + c1(t) = Su(t) + c2(t). (2.10)

in which
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u′(t) = [u1
′(t), . . . , un−1

′(t)]
T
,

u(t) = [u1(t), . . . , un−1(t)]
T
,

R = Trid

(
1

12
+

hAr

24Br
+

h

12Br

∂B

∂x

∣∣∣∣
r

,
5

6
,
1

12
− hAr

24Br
− h

12Br

∂B

∂x

∣∣∣∣
r

)
(n−1)×(n−1)

,

S = Trid

(
Pr

(2)

h2
− Pr

(1)

2h
,
−2Pr

(2)

h2
,
Pr

(2)

h2
+
Pr

(1)

2h

)
(n−1)×(n−1)

,

c1(t) =

[(
1

12
+

hA

24B
+

h

12B

∂B

∂x

)
1

ψ1
′(t), 0, . . . , 0,

(
1

12
− hA

24B
− h

12B

∂B

∂x

)
n−1

ψ2
′(t)

]T
,

c2(t) =

[(
P (2)

h2
− P (1)

2h

)
1

ψ1(t), 0, . . . , 0,

(
P (2)

h2
+
P (1)

2h

)
n−1

ψ2(t)

]T
.

If we put C(t) = c1(t) − c2(t) and by defining M = R−1S and P = R−1 then (2.10) can be

written as follows:

u′(t) =Mu(t) + PC(t) = F (u(t), t). (2.11)

Now we apply the cubic C1 spline collocation approach [4] to the system of ordinary differen-

tial equations (2.11). The cubic C1 spline collocation method is an A-stable method for solving

the first-order ordinary differential equations and has fourth order accuracy (see also[5, 2]).

Let U(t) be a vector that approximates u(t) such that each of its component is a cubic

spline function and satisfies in (2.11) at collocation points tj−1, tj and tj− 1
2
in the time interval

[tj−1, tj ] i.e. U
′(tl) = F (U(tl), tl), l = j − 1, j − 1

2 , j. From [4] we have the following relations:

U(t) = U j−1 + kT1(m)U ′j−1
+ kT2(m)U ′j− 1

2 + kT3(m)U ′j , (2.12)

where

T1(m) = m− 3
2m

2 + 2
3m

3, T2(m) = 2m2 − 4
3m

3,

T3(m) = −1
2m

2 + 2
3m

3, t = tj−1 +mk, m ∈ [0, 1]

and

U j = U j−1 +
k

6
[MU j−1 + PCj−1 + 4MU j− 1

2 + 4PCj− 1
2 +MU j + PCj ], (2.13)

and

U j− 1
2 = U j−1 +

k

24
[5MU j−1 + 5PCj−1 + 8MU j− 1

2 + 8PCj− 1
2 −MU j − PCj ], (2.14)

in which U j = U(tj), C
j = C(tj), U

′j = U ′(tj) and so on. After some manipulation (2.13) and

(2.14) can be written as

(I − k

6
M)U j = (I − k

6
M)U j−1 +

2k

3
MU j− 1

2 +
k

6
P (Cj−1 + 4Cj− 1

2 + Cj), (2.15)
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Table 3.1: Maximum error obtained for Problem 1 at T = 1.

h Maximum Error

1/5 4.7198× 10−6

1/10 6.8234× 10−7

1/20 9.0600× 10−8

1/40 1.1643× 10−8

and

(I − k

3
M)U j− 1

2 = (I − 5k

24
M)U j−1 − k

24
MU j +

k

24
P (5Cj−1 + 8Cj− 1

2 − Cj), (2.16)

respectively, where I is the (n− 1)× (n− 1) identity matrix. Multiplying both sides of (2.15)

and (2.16) by (I − k
3M) and 2k

3 M respectively and adding resulted equations together give as

(I − k

2
M +

k2

12
M2)U j = (I +

k

2
M +

k2

12
M2)U j−1

+(
k

6
P +

k2

12
PM)Cj−1 +

2k

3
PCj− 1

2 + (
k

6
P − k2

12
PM)Cj .

(2.17)

So for obtaining the new U j we should solve a linear system of (n−1) equations and construct

approximate solution (2.12) in [tj−1, tj ]. Note that by multiplying eqation (2.17) in R2 we can

avoid of any matrix inverting. As we see the amplification matrix, i.e. (I − k
2M + k2

12M
2)−1(I+

k
2M + k2

12M
2), is the (2,2) Pade approximation of ekM , so the method is fourth-order accurate

in time component.

3. Numerical experiments

We applied the methods presented in this article and solved several examples. We performed

our computations using Maple 13 software.

3.1. Test problem 1

Consider equation ∂u
∂t = ∂u(x,t)

∂x + ∂2u(x,t)
∂x2 with A(x, t) = −1 and B(x, t) = 1. The exact

solution is given with

u(x, t) = x+ t , 0 ⩽ x ⩽ 1. (3.1)

The boundary conditions can be obtained easily from exact solution. By applying this technique,

equation (3.1) is solved. In Table (3.1) the maximum errors of approximate solutions are shown

for T = 1 and h = k.

3.2. Test problem 2

Consider equation (1.1) with A(x, t) = 3 and B(x, t) = 1. The exact solution is given with

u(x, t) =
1√
1 + t

exp

(
−(x− (1 + t)A(x, t))

2

4B(x, t)(1 + t)

)
, 0 ⩽ x ⩽ 1 . (3.2)

The boundary conditions can be obtained easily from exact solution. The numerical results for

T = 1 and h = k are shown in Table (3.2).
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Table 3.2: Maximum error obtained for Problem 2 at T = 1.

h Maximum Error

1/5 5.3455× 10−6

1/10 1.4000× 10−6

1/20 2.2516× 10−7

1/40 3.1513× 10−8

Table 3.3: Error obtained at T = 1 for Problem 3.

Grid point Error

0.1 2.6816× 10−6

0.2 3.1583× 10−6

0.3 3.5756× 10−6

0.4 3.9269× 10−6

0.5 4.2102× 10−6

0.6 4.4279× 10−6

0.7 4.5416× 10−6

0.8 4.5709× 10−6

0.9 4.4930× 10−6

3.3. Test problem 3

Consider equation (1.1) with A(x, t) = −(x+1) and B(x, t) = 1. The exact solution is given

with

u(x, t) = (x+ 1)3 + 8(x+ 1)t , x ∈ [0, 1]. (3.3)

The boundary conditions and initial condition can be obtained easily from exact solution. By

using the introduced methods equation (3.3) is solved. The obtained errors of approximations

for h =
1

20
with T = 1 are given in Table (3.3).

4. Conclusion

In this paper, we proposed a class of new finite difference schemes, for solving Kolmogorov
equation. First we combined a high-order compact finite difference scheme of fourth-order to
approximate the spatial derivative with cubic C1-spline collocation technique, for time inte-
gration. This joined method have fourth-order accuracy. The numerical results confirm the
validity of this method. In the spline method, we should solve N linear systems of (n − 1)
equations. Note that, using spline method in each space step a closed form approximation is
obtained.
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