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ABSTRACT. Let  EN( T; Φ’ , Φ’’ )  denote  the  average  number  of  real  

roots  of  the  random  trigonometric  polynomial 

T=Tn( θ, ω )=
   ka

n

K

K cos
1




 

In the interval (Φ’ , Φ’’ ). Clearly , T can  have  at  most  2n zeros  in  the  

interval ( 0, 2π ) .Assuming that  ak(ω )s  to  be  mutually independent  

identically  distributed  normal random  variables , Dunnage has  shown  that  

in  the  interval  0 ≤ θ ≤ 2π  all  save  a  certain  exceptional  set  of  the  

functions  (Tn ( θω ))  have    
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 zeros  when  n  is  

large. We consider  the  same  family  of  trigonometric  polynomials  and  use  

the  Kac_rice  formula  for  the  expectation  of  the  number  of  real  roots  

and  obtain  that   

EN ( T ;  0 , 2π ) ~    )(log
6

2
nO

n
  

 

This  result  is  better  than  that  of  Dunnage  since  our  constant  is  (1/√2) 

Times  his  constant  and  our  error  term  is  smaller . the  proof  is  based  

on  the  convergence  of  an  integral  of  which  an  asymptotic  estimation  is  

obtained . 
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1 . Introduction 

 

Let  N( T ; Φ’ , Φ’’ )  be  the  number  of  real  zeros  of  trigonometric  

polynomial     T = Tn ( Φ, ω ) =
   kba K

n

K

K cos
1




                     ( 1 ) 

In  the  interval ( Φ’ , Φ’’ )  where  the  coefficients  ak(ω)  are  mutually  

independent  random  variables  identically  distributed  according  to  the  

normal  law ; bk=kp  are  positive  constants  and  when  multiple  zeros  are  

counted  only  once . Let  EN ( T ;  Φ’ , Φ’’ )  denote  the  expectation  of  N ( 

T ;  Φ’ , Φ’’ ). Obviously , Tn ( Φ, ω ) can  have  at  most  2n  most  zeros  in  

the  interval (0 , 2π ).Dunnage [1] has  shown  that  in  the  interval  0 ≤ θ ≤ 

2π  all  save  a  certain  exceptional  set  of  the  functions  Tn( θ, ω ) have 
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zeros  when n is large . The  measure  of  the  exceptional  set  does  not  

exceed ( logn )-1 .  subsequently ,Das[2] and  Qualls [ 3 ]  have  obtained  

similar  results. In  this  note  our  purpose  is  to  show  that  it  is  possible  to  

obtain  a  still  lower  estimate  for  the  expectation  of  the  number  of  real  

roots  of ( 1 )  by  using  the  method  of  Loggan &  shepp [4]. We show  that  

EN ( T ;  0 , 2π ) ~    )(log
6

2
nO

n
  

This  result is better than that of Dunnage since our constant  is( 1 /√2) 

times  his  constant  and  our  error  term  is  smaller. 

                   

                          2 . The  Approximation  for  EN ( T ;  0 , 2π ) 

 

Let  L ( n )  be  a  positive-valued  function  of  n  such  that L(n) and  n/ L(n) 

both  approach  infinity  with  n . We take  =L(n)/n  throughout. 

                    

                  Outside  a small  exceptional  set  of  ω, Tn( θ ,ω )  has  a 

negligible  number of zeros in  each  of the intervals (0, ) ,( π-, π+) and 

(2π-,2π). By  periodicity ,  of  zeros  in  each  of  intervals (0, ) and (2π-

,2π) is  the  same  as  number  in (-,). We shall  use  the  following  

lemma , which  is  due  to  Das [2] . Lemma. The probability that Tn( θ ,ω) has 

more than      1 + ( 2 / log 2)(logn+2n) Zeros  in  ω-≤ θ ≤ ω+ does  not  

exceed  2 exp(-n) .This  lemma  is  due  to  Das[2] ,  in  the  special  case  

Dn=∑bn = n.The  expected  number  of  zeros  of  T  in  the  interval (Φ’ , Φ’’) 

is  given  by  the  Kac_Rice  formula   
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                EN ( T ;  Φ’ , Φ’’ )  =
  





dpd ,0

''

'

 






                    ( 2 ) 

Where the  probability  density  p   ,  T=  and  T’=η  is  given  by  the  

Fourier inversion formula  
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    ziTiTyEzy 'exp,    being  the  characteristic  function  of  the  

combined  variable  ( T , T’ ). In our  case ,we have   
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where  Re  stands  for  the  real  part. 

        Here , if  we  allow  coskθ , ksinkθ  to  be  arbitrary , that  is  we  take  

each  of  them  to  be  constant  in k ,then  the  probability  density  p( ξ, η ) 

Of  ξ=T( θ ) = AX and  η= T’( θ ) =BX , say , degenerates  and  we get  from 

(3)  the  following  identity , valid  for  non-zero  A  and  B  which  can  be  

chosen  suitably .  
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Subtracting  (4)  from (3)  we  get 
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                       duHzGz )exp(exp 22   (5) 

 

by transforming the  integrals  putting y = - uz  or  y = uz  and  denoting 
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And                    H=( Au + B )2 

Now  using  the  identity  (Logan  and  shepp[4] , for  α =2 ),         
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22 log
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GzHz  

In  the  limit  as  ε→0  we  obtain  from (5)  that 

 

 

   (6) 

 

                                  Which  has  been  shown  in  3  to  be  a  convergent  integral. 

                         

The  double  integral  appearing  in (5)  is  dominated  by  a  decreasing  

exponential  function. So  the  involved  integrals  are  uniformly  convergent  

on  any  interval. Since  the  integral  on  the  right  side  of ( 6 )  converges , 

we conclude  that  both  the  passage  to  the  limit  by  letting  ε→0  and  the  

subsequent  change  of  the  order  of  integration  to  produce  the  equation ( 

6) are  justified. 
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              3 . Estimation  of  the  integral  of  equation ( 6 ) 

 

In this  section  we  obtain  an  asymptotic  estimation  for   the  integral 
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Where  A  and  B  are  fixed  non-zero  real  numbers .  this  integral    exists  

in  general  as  a  principal  value  i.e.                                        

                  




R

R
R

...
lim

   , if       A2 = 


n

K 1

cos2kθ 

Let                   B2 = 
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As in Das[ 2 ,pp.727]   we  have  for   
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        , ( β = constant ) , 

Taking                    L( n ) = logn .   

                      We  have  always  by  Cauchy’s  inequality ,  AB ≥ C2. In  what  

follows  we  will  assume  that  AB > C2. This  happens  if  θ does  not  take  

values  from  the  set {0,± π, ±2π,… } . In   fact ,                   
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So  that         
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  , putting  z= 4x / (1+x2 ) .            

         now x→0+ as u→0  or  ∞. But  x > ε > 0 , if  εA4 u4  - 2u2A2 B2 + εB4 < 0 , 

which  occurs  for  all  u  in  the  interval  ( d1 {O(n2) / √ ε } –d2 ) ,where  d1 , 

d2  are  functions  of  ε  tending  to  zero  as  ε→0. Thus  for  all  u  in  the  

interval ( 0 , ∞ ) we  can  safely  assume  that  ε = 1 / n ,and  x= {1 / L(n)} , 

where  n  is  tending  to  infinity .  
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Again 
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           now  from  (9) and  (10)      I’ ~ 
6

2 n
                                       ( 11 ) 

And  from  (8) and (11)         I ~ 
6

2 n
        ( 12 ) 

 

 4 . EN ( T ;  Φ’ , Φ’’ )    

From (2) , (6) and  (12) , we  obtain   EN ( T ;  Φ’ , Φ’’ ) = 
 

6

''' n
 

In  view  of  our  choice  of  A , B and  C  

 

                                EN ( T ; π+ε , 2π-ε ) = EN ( T ; ε , π-ε )   

Again , by  the  lemma , we  have   

     EN ( T ; 0 , ε ) + EN ( T ; π- ε , π+ε ) + EN ( T ; 2π-ε , 2π ) 

 

                 = EN ( T ; π+ε , 2π-ε )  ≤  2 { 1 + ( 2 / log 2 )( log n + 2nε ) }       

 

  Now  choosing ε = ( log n) / n ,  the  desired  result  follows . 
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