# Optimal Convex Combination Bounds of Arithmetic and Second Seiffert Means for Neuman-Sándor Mean 

Ma Hongyan \& Liu Chunrong<br>College of Mathematics and Computer Science, Hebei University, Baoding 071002, P. R. China mahongyan@hbu.edu.cn \& lcr@hbu.edu.cn


#### Abstract

In this paper, we present the least value $\alpha$ and the greatest value $\beta$ such that the double inequality


$$
\alpha A(a, b)+(1-\alpha) T(a, b)<M(a, b)<\beta A(a, b)+(1-\beta) T(a, b)
$$

hold for all $a, b>0$ with $a \neq b$, where $A(a, b), M(a, b)$ and $T(a, b)$ are the arithmetic, NeumanSándor and second Seiffert means of $a$ and $b$, respectively.

## 1. Introduction

For $a, b>0$ with $a \neq b$ the Neuman-Sándor mean $M(a, b)[1]$ was defined by

$$
\begin{equation*}
M(a, b)=\frac{a-b}{2 \sinh ^{-1}\left(\frac{a-b}{a+b}\right)} \tag{1.1}
\end{equation*}
$$

where $\sinh ^{-1}(x)=\log \left(x+\sqrt{1+x^{2}}\right)$ is the inverse hyperbolic sine function.
Recently, the Neuman-Sándor mean has been the subject of intensive research. In particular, many remarkable inequalities for the Neuman-Sándor mean $M(a, b)$ can be found in the literature [1,2].

Let $H(a, b)=(2 a b) /(a+b), G(a, b)=\sqrt{a b}, L(a, b)=(a-b) /(\log a-\log b), P(a, b)=(a-$ b) $/\left(4 \tan ^{-1} \sqrt{a / b}-\pi\right), A(a, b)=(a+b) / 2, T(a, b)=(a-b) /\left[2 \tan ^{-1}(a-b) /(a+b)\right], Q(a, b)=$ $\sqrt{\left(a^{2}+b^{2}\right) / 2}$ and $C(a, b)=\left(a^{2}+b^{2}\right) /(a+b)$ be the harmonic, geometric, logarithmic, first Seiffert, arithmetic, second Seiffert, quadratic and contra-harmonic means of $a$ and $b$, respectively. Then

$$
\begin{aligned}
& \min \{a, b\}<H(a, b)<G(a, b)<L(a, b)<P(a, b)<A(a, b) \\
& <M(a, b)<T(a, b)<Q(a, b)<C(a, b)<\max \{a, b\}
\end{aligned}
$$

hold for all $a, b>0$ with $a \neq b$.
Neuman and Sándor [1, 2] proved that the inequalities

$$
\begin{gathered}
\frac{\pi}{4 \log (1+\sqrt{2})} I(a, b)<M(a, b)<\frac{A(a, b)}{\log (1+\sqrt{2})} \\
\sqrt{2 T^{2}(a, b)-Q^{2}(a, b)}<M(a, b)<\frac{T^{2}(a, b)}{Q^{2}(a, b)}
\end{gathered}
$$

Keywords and phrases: Inequality, arithmetic mean, Neuman-Sándor mean, Seiffert mean
This work was supported by the Natural Science Foundation of Hebei Province (F2015201089).

$$
\begin{gathered}
H(T(a, b), A(a, b))<M(a, b)<L(A(a, b), Q(a, b)) \\
T(a, b)>H(M(a, b), Q(a, b)), M(a, b)<\frac{A^{2}(a, b)}{P(a, b)}, \\
A^{2 / 3}(a, b) Q^{1 / 3}(a, b)<M(a, b)<\frac{2 A(a, b)+Q(a, b)}{3} \\
\sqrt{A(a, b) T(a, b)}<M(a, b)<\sqrt{A^{2}(a, b)+T^{2}(a, b)} \\
\frac{G(x, y)}{G(1-x, 1-y)}<\frac{L(x, y)}{L(1-x, 1-y)}<\frac{P(x, y)}{P(1-x, 1-y)} \\
<\frac{A(x, y)}{A(1-x, 1-y)}<\frac{M(x, y)}{M(1-x, 1-y)}<\frac{T(x, y)}{T(1-x, 1-y)} \\
\frac{1}{A(1-x, 1-y)}-\frac{1}{A(x, y)}<\frac{1}{M(1-x, 1-y)}-\frac{1}{M(x, y)}<\frac{1}{T(1-x, 1-y)}-\frac{1}{T(x, y)} \\
A(x, y) A(1-x, 1-y)<M(x, y) M(1-x, 1-y)<T(x, y) T(1-x, 1-y)
\end{gathered}
$$

hold for all $a, b>0$ and $x, y \in(0,1 / 2)$ with $a \neq b$ and $x \neq y$.
Li et al. [3] showed that the double inequality

$$
L_{p_{0}}(a, b)<M(a, b)<L_{2}(a, b)
$$

holds for all $a, b>0$ with $a \neq b$, where $L_{p}(a, b)=\left[\left(a^{p+1}-b^{p+1}\right) /((p+1)(a-b))\right]^{1 / p}(p \neq-1,0)$, $L_{0}(a, b)=1 / e\left(a^{a} / b^{b}\right)^{1 /(a-b)}$ and $L_{-1}(a, b)=(a-b) /(\log a-\log b)$ is the p-th generalized logarithmic mean of $a$ and $b$, and $p_{0}=1.843 \cdots$ is the unique solution of the equation $(p+1)^{1 / p}=$ $2 \log (1+\sqrt{2})$.

In [4], Neuman proved that the double inequalities

$$
\alpha Q(a, b)+(1-\alpha) A(a, b)<M(a, b)<\beta Q(a, b)+(1-\beta) A(a, b)
$$

and

$$
\lambda C(a, b)+(1-\lambda) A(a, b)<M(a, b)<\mu C(a, b)+(1-\mu) A(a, b)
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha \leq[1-\log (1+\sqrt{2})] /[(\sqrt{2}-1) \log (1+\sqrt{2})]=$ $0.3249 \cdots, \beta \geq 1 / 3, \lambda \leq[1-\log (1+\sqrt{2})] / \log (1+\sqrt{2})=0.1345 \cdots$ and $\mu \geq 1 / 6$.

In [5], Yuming Chu etc proved that the double inequalities

$$
\alpha_{1} L(a, b)+\left(1-\alpha_{1}\right) Q(a, b)<M(a, b)<\beta_{1} L(a, b)+\left(1-\beta_{1}\right) Q(a, b)
$$

and

$$
\alpha_{2} L(a, b)+\left(1-\alpha_{2}\right) C(a, b)<M(a, b)<\beta_{2} L(a, b)+\left(1-\beta_{2}\right) C(a, b)
$$

hold for all $a, b>0$ with $a \neq b$ if and only if $\alpha_{1} \geq 2 / 5, \beta_{1} \leq 1-1 /[\sqrt{2} \log (1+\sqrt{2})]=$ $0.1977 \cdots, \alpha_{2} \geq 5 / 8$ and $\beta_{2} \leq 1-1 /[2 \log (1+\sqrt{2})]=0.4327 \cdots$.

In addition, inequalities for quotients involving the Neuman-Sándor mean $M(a, b)$ were obtained in [6].

The main purpose of this paper is to find the least value $\alpha$ and the greatest value $\beta$ such that the double inequality

$$
\alpha A(a, b)+(1-\alpha) T(a, b)<M(a, b)<\beta A(a, b)+(1-\beta) T(a, b)
$$

holds for all $a, b>0$ with $a \neq b$. All numerical computations are carried out using the mathematical calculation software.

## 2. Lemmas

In order to establish our main results we need several lemmas, which we present in this
section.
Lemmas 1. Let $\mu=1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]=0.5074 \cdots, p \in\{1 / 2, \mu\}$, and $\omega_{p}(t)=$ $(p-1)^{3} t^{4}+(1-p)^{2}(1-10 p) t^{3}+(1-p)\left(8 p^{2}-14 p+1\right) t^{2}+\left(4 p^{2}-2 p+3\right) t+2(2 p+1)$. Then $\omega_{p}(t)>0$ holds for all $t \in(0,1)$.

Proof. Simple computations lead to

$$
\begin{gather*}
\lim _{t \rightarrow 0^{+}} \omega_{p}(t)=2(2 p+1)>0, \quad \lim _{t \rightarrow 1^{-}} \omega_{p}(t)=(2-p)\left(19 p^{2}-12 p+4\right)>0  \tag{2.1}\\
\lim _{t \rightarrow 0^{+}} \omega_{p}^{\prime}(t)=4 p^{2}-2 p+3>0, \lim _{t \rightarrow 1^{-}} \omega_{p}^{\prime}(t)=(3-2 p)\left(25 p^{2}-24 p+4\right)<0  \tag{2.2}\\
\lim _{t \rightarrow 0^{+}} \omega_{p}^{\prime \prime}(t)=2(1-p)\left(8 p^{2}-14 p+1\right)<0 \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
\omega_{p}^{\prime \prime \prime}(t)=6\left[4(p-1)^{3} t+(1-p)^{2}(1-10 p)\right]<0 \tag{2.4}
\end{equation*}
$$

for $t \in(0,1)$. (2.3) and (2.4) imply that $\omega_{p}^{\prime}(t)$ is strictly decreasing in $(0,1)$. It follows from (2.2) and the monotonicity of $\omega_{p}^{\prime}(t)$ that there exists $t_{0} \in(0,1)$ such that $\omega_{p}^{\prime}(t)>0$ for $t \in\left(0, t_{0}\right)$ and $\omega_{p}^{\prime}(t)<0$ for $t \in\left(t_{0}, 1\right)$, hence $\omega_{p}(t)$ is strictly increasing in $\left(0, t_{0}\right)$ and strictly decreasing in $\left(t_{0}, 1\right)$. Therefore the conclusion of lemma 1 is educed from (2.1) the monotonicity of $\omega_{p}(t)$.

Lemmas 2. Let $\mu=1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]=0.5074 \cdots, p \in\{1 / 2, \mu\}$, and $v_{p}(t)=$ $2\left[2(1-p)^{2} t^{3}+5(1-p)^{2} t^{2}+2\left(p^{2}-3 p+1\right) t-(2 p+1)\right]$. Then $v_{p}(t)<0$ holds for all $t \in(0,1)$. Proof. Simple computations yield
and

$$
\begin{gather*}
\lim _{t \rightarrow 0^{+}} v_{p}(t)=-2(2 p+1)<0, \lim _{t \rightarrow 1^{-}} v_{p}(t)=2(p-2)(9 p-4)<0  \tag{2.5}\\
\lim _{t \rightarrow 0^{+}} v_{p}^{\prime}(t)=4\left(p^{2}-3 p+1\right)<0, \lim _{t \rightarrow 1^{-}} v_{p}^{\prime}(t)=4\left(9 p^{2}-19 p+9\right)>0 \tag{2.6}
\end{gather*}
$$

$$
\begin{equation*}
v_{p}^{\prime \prime}(t)=4(1-p)^{2}(6 t+5)>0 \tag{2.7}
\end{equation*}
$$

holds for all $t \in(0,1)$. From (2.7) we know that $v_{p}^{\prime}(t)$ is strictly increasing in $(0,1)$.
It follows from (2.6) and the monotonicity of $v_{p}^{\prime}(t)$ that there exists $t_{1} \in(0,1)$ such that $v_{p}^{\prime}(t)<0$ for $t \in\left(0, t_{1}\right)$ and $v_{p}^{\prime}(t)>0$ for $t \in\left(t_{1}, 1\right)$, hence $v_{p}(t)$ is strictly decreasing in $\left(0, t_{1}\right)$ and strictly increasing in $\left(t_{1}, 1\right)$. Therefore the conclusion of lemma 2 is elicited from (2.5) and the monotonicity of $v_{p}(t)$.

Lemmas 3. Let $\mu=1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]=0.5074 \cdots$, and $L_{\mu}(t)=(1-\mu)^{6} t^{7}+$ $2(1-\mu)^{4}\left(10 \mu^{2}-11 \mu-7\right) t^{6}+(1-\mu)^{4}\left(116 \mu^{2}-48 \mu-93\right) t^{5}+4(1-\mu)^{2}\left(40 \mu^{4}-116 \mu^{3}+36 \mu^{2}+\right.$ $99 \mu-51) t^{4}+(1-\mu)^{2}\left(64 \mu^{4}-304 \mu^{3}+40 \mu^{2}+480 \mu-185\right) t^{3}-2\left(32 \mu^{5}-16 \mu^{4}-240 \mu^{3}+398 \mu^{2}-\right.$ $181 \mu+15) t^{2}-\left(64 \mu^{4}-336 \mu^{3}+380 \mu^{2}-16 \mu-53\right) t+8(1+2 \mu)(1-2 \mu)(3-2 \mu)$. Then there exists $\eta_{2} \in(0,1)$ such that $L_{\mu}(t)<0$ for $t \in\left(0, \eta_{2}\right)$ and $L_{\mu}(t)>0$ for $t \in\left(\eta_{2}, 1\right)$.

Proof. By calculating first-sixth derived functions of $L_{\mu}(t)$ and the numerical computations we know that $L_{\mu}^{(6)}(t)<0$ for $t \in(0,1)$, and $L_{\mu}(0)<0, L_{\mu}(1)>0, L_{\mu}^{\prime}(0)>0, L_{\mu}^{\prime}(1)>$ $0, L_{\mu}^{\prime \prime}(0)>0, L_{\mu}^{\prime \prime}(1)<0, L_{\mu}^{\prime \prime \prime}(0)>0, L_{\mu}^{\prime \prime \prime}(1)<0, L_{\mu}^{(4)}(0)<0, L_{\mu}^{(5)}(0)<0$. Apparently $L_{\mu}^{(4)}(0)<0, L_{\mu}^{(5)}(0)<0$ and $L_{\mu}^{(6)}(t)<0$ imply that $L_{\mu}^{\prime \prime \prime}(t)$ is strictly decreasing in $(0,1)$.

It follows from $L_{\mu}^{\prime \prime \prime}(0)>0$ and $L_{\mu}^{\prime \prime \prime}(1)<0$ together with the monotonicity of $L_{\mu}^{\prime \prime \prime}(t)$ that there exists $\eta_{0} \in(0,1)$ such that $L_{\mu}^{\prime \prime \prime}(t)>0$ for $t \in\left(0, \eta_{0}\right)$ and $L_{\mu}^{\prime \prime \prime}(t)<0$ for $t \in\left(\eta_{0}, 1\right)$, so
$L_{\mu}^{\prime \prime}(t)$ is strictly increasing in $\left(0, \eta_{0}\right)$ and strictly decreasing in $\left(\eta_{0}, 1\right)$. From $L_{\mu}^{\prime \prime}(0)>0$ and $L_{\mu}^{\prime \prime}(1)<0$ together with the monotonicity of $L_{\mu}^{\prime \prime}(t)$ we know that there exists $\eta_{1} \in\left(\eta_{0}, 1\right)$ such that $L_{\mu}^{\prime \prime}(t)>0$ for $t \in\left(0, \eta_{1}\right)$ and $L_{\mu}^{\prime \prime}(t)<0$ for $t \in\left(\eta_{1}, 1\right)$, hence $L_{\mu}^{\prime}(t)$ is strictly increasing in $\left(0, \eta_{1}\right)$ and strictly decreasing in $\left(\eta_{1}, 1\right) . L_{\mu}^{\prime}(0)>0$ and $L_{\mu}^{\prime}(1)>0$ together with the monotonicity of $L_{\mu}^{\prime}(t)$ imply that $L_{\mu}^{\prime}(t)>0$ for $t \in(0,1)$, thus $L_{\mu}(t)$ is strictly increasing in $(0,1)$. Therefore the conclusion of lemma 3 follows from $L_{\mu}(0)<0$ and $L_{\mu}(1)>0$ together with the monotonicity of $L_{\mu}(t)$.

## 3. Main Results

theorem. The double inequality

$$
\begin{equation*}
\alpha A(a, b)+(1-\alpha) T(a, b)<M(a, b)<\beta A(a, b)+(1-\beta) T(a, b) \tag{3.1}
\end{equation*}
$$

holds true for $a, b>0$ with $a \neq b$ if and only if $\alpha \geq 1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]=0.5074 \cdots$ and $\beta \leq 1 / 2$.

Proof. Let $\mu=1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]=0.5074 \cdots$. Firstly we prove that

$$
\begin{equation*}
\frac{1}{2}[A(a, b)+T(a, b)]>M(a, b) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu A(a, b)+(1-\mu) T(a, b)<M(a, b) \tag{3.3}
\end{equation*}
$$

Without loss of generality, we assume that $a>b>0$. Let $x=(a-b) /(a+b) \in(0,1)$ and $p \in\{1 / 2, \mu\}$. Then

$$
\begin{equation*}
\frac{M(a, b)}{A(a, b)}=\frac{x}{\sinh ^{-1}(x)}, \frac{T(a, b)}{A(a, b)}=\frac{x}{\tan ^{-1} x} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{p A(a, b)+(1-p) T(a, b)-M(a, b)}{A(a, b)}=\frac{E_{p}(x)}{\log \left(x+\sqrt{1+x^{2}}\right) \tan ^{-1} x} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{p}(x)=p \tan ^{-1} x \log \left(x+\sqrt{1+x^{2}}\right)+(1-p) x \log \left(x+\sqrt{1+x^{2}}\right)-x \tan ^{-1} x \tag{3.6}
\end{equation*}
$$

Some tedious, but not difficult, calculations lead to

$$
\begin{gather*}
\lim _{x \rightarrow 0^{+}} E_{p}(x)=0  \tag{3.7}\\
\lim _{x \rightarrow 1^{-}} E_{p}(x)=\left[\left(\frac{\pi}{4}-1\right) p+1\right] \log (1+\sqrt{2})-\frac{\pi}{4}  \tag{3.8}\\
E_{p}^{\prime}(x)=\frac{\left[1+(1-p) x^{2}\right] G_{p}(x)}{1+x^{2}} \tag{3.9}
\end{gather*}
$$

where

$$
\begin{gather*}
G_{p}(x)=\frac{p\left(\tan ^{-1} x-p x+x\right) \sqrt{1+x^{2}}-\left(1+x^{2}\right) \tan ^{-1} x-x}{1+(1-p) x^{2}}+\log \left(x+\sqrt{1+x^{2}}\right)  \tag{3.10}\\
\lim _{x \rightarrow 0^{+}} G_{p}(x)=0  \tag{3.11}\\
\lim _{x \rightarrow 1^{-}} G_{p}(x)=\log (1+\sqrt{2})+\frac{(\pi-4) \sqrt{2} p+2(2 \sqrt{2}-\pi-2)}{4(2-p)}  \tag{3.12}\\
G_{p}^{\prime}(x)=\frac{p x\left[(1-2 p)+(1-p) x^{2}+2 \sqrt{1+x^{2}}\right] H_{p}(x)}{\left[1+(1-p) x^{2}\right]^{2} \sqrt{1+x^{2}}} \tag{3.13}
\end{gather*}
$$

where

$$
\begin{gather*}
H_{p}(x)=\frac{(1-p)^{2} x^{4}+\left(3-2 p^{2}-p\right) x^{2}-2 \sqrt{1+x^{2}}+2}{p x\left[(1-2 p)+(1-p) x^{2}+2 \sqrt{1+x^{2}}\right]}-\tan ^{-1} x  \tag{3.14}\\
\lim _{x \rightarrow 0^{+}} H_{p}(x)=0  \tag{3.15}\\
\lim _{x \rightarrow 1^{-}} H_{p}(x)=\frac{2(3-\sqrt{2})-p(p+3)}{p(2+2 \sqrt{2}-3 p)}-\frac{\pi}{4} \tag{3.16}
\end{gather*}
$$

and

$$
\begin{equation*}
H_{p}^{\prime}(x)=\frac{K_{p}(x)}{p x^{2}\left(1+x^{2}\right)\left[(1-2 p)+(1-p) x^{2}+2 \sqrt{1+x^{2}}\right]^{2}}, \tag{3.17}
\end{equation*}
$$

where

$$
\begin{align*}
K_{p}(x)= & (p-1)^{3} x^{8}+(1-p)^{2}(1-10 p) x^{6}+(1-p)\left(8 p^{2}-14 p+1\right) x^{4} \\
& +\left(4 p^{2}-2 p+3\right) x^{2}+2(2 p+1)+\left[4(p-1)^{2} x^{6}+10(1-p)^{2}\right.  \tag{3.18}\\
& \left.\cdot(1-10 p) x^{4}+4\left(p^{2}-3 p+1\right) x^{2}-2(2 p+1)\right] \sqrt{1+x^{2}}
\end{align*}
$$

Let $x=\sqrt{t}(t \in(0,1))$, then

$$
\begin{equation*}
K_{p}(x)=\omega_{p}(t)+v_{p}(t) \sqrt{1+t}=\frac{t L_{p}(t)}{\omega_{p}(t)-v_{p}(t) \sqrt{1+t}}, \tag{3.19}
\end{equation*}
$$

where $\omega_{p}(t)$ and $v_{p}(t)$ are defined as in lemmas 1 and 2 , respectively, and

$$
\begin{align*}
L_{p}(t)= & (1-p)^{6} t^{7}+2(1-p)^{4}\left(10 p^{2}-11 p-7\right) t^{6}+(1-p)^{4}\left(116 p^{2}-48 p-93\right) t^{5} \\
& +4(1-p)^{2}\left(40 p^{4}-116 p^{3}+36 p^{2}+99 p-51\right) t^{4}+(1-p)^{2}\left(64 p^{4}-304 p^{3}\right.  \tag{3.20}\\
& \left.+40 p^{2}+480 p-185\right) t^{3}-2\left(32 p^{5}-16 p^{4}-240 p^{3}+398 p^{2}-181 p+15\right) t^{2} \\
& -\left(64 p^{4}-336 p^{3}+380 p^{2}-16 p-53\right) t+8(1+2 p)(1-2 p)(3-2 p)
\end{align*}
$$

Now we distinguish between two cases:
Case 1. $p=1 / 2$. (3.20) leads to

$$
\begin{equation*}
L_{1 / 2}(t)=\frac{1}{64} t(t+2)^{2}\left[t^{4}+84 t^{2}(1-t)+104 t(1-t)+8(3 t+8)\right]>0 \tag{3.21}
\end{equation*}
$$

holds for all $t \in(0,1)$. This fact and (3.19), (3.17) together with lemmas 1 and 2 imply that $H_{1 / 2}^{\prime}(x)>0$ for $x \in(0,1)$, hence $H_{1 / 2}(x)$ is strictly increasing in $(0,1)$. Therefore the inequality (3.2) follows from (3.5), (3.7), (3.9), (3.11), (3.13) and (3.15) together with the monotonicity of $H_{1 / 2}(x)$.

Case 2. $p=\mu$. Here (3.20) becomes $L_{\mu}(t)$, which is defined as in lemma 3. By (3.19) and the conclusions of lemmas $1-3$ we confirm that $K_{\mu}(x)<0$ for $x \in\left(0, x_{0}\right)$ and $K_{\mu}(x)>0$ for $x \in\left(x_{0}, 1\right)$, where $x_{0}=\sqrt{\eta_{2}}$. This fact and (3.18) imply that $H_{\mu}^{\prime}(x)<0$ for $x \in\left(0, x_{0}\right)$ and $H_{\mu}^{\prime}(x)>0$ for $x \in\left(x_{0}, 1\right)$, hence $H_{\mu}(x)$ is strictly decreasing in $\left(0, x_{0}\right)$ and strictly increasing in $\left(x_{0}, 1\right)$.

Notice that (3.8), (3.12) and (3.16) become

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} E_{\mu}(x)=0, \quad \lim _{x \rightarrow 1^{-}} G_{\mu}(x)=0.0033 \cdots>0, \lim _{x \rightarrow 1^{-}} H_{\mu}(x)=0.0442 \cdots>0 \tag{3.22}
\end{equation*}
$$

respectively. It follows from (3.22), (3.15), (3.13), (3.11), (3.9) and (3.7) together with the monotonicity of $H_{\mu}(x)$ that

$$
\begin{equation*}
E_{\mu}(x)<0 \tag{3.23}
\end{equation*}
$$

for $x \in(0,1)$. Therefore the inequality (3.3) follows from (3.5) and (3.23).
Finally, we prove that $\mu A(a, b)+(1-\mu) T(a, b)$ is the best possible lower convex combination bound and $1 / 2[A(a, b)+T(a, b)]$ is the best possible upper convex combination bound of the
arithmetic and the second Seiffert means for the Neuman-Sándor mean.
Equations (3,4) lead to

$$
\begin{equation*}
\frac{T(a, b)-M(a, b)}{T(a, b)-A(a, b)}=\frac{x / \tan ^{-1} x-x / \sinh ^{-1}(x)}{x / \tan ^{-1} x-1}=R(x) \tag{3.24}
\end{equation*}
$$

From (3.23) one has

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} R(x)=\mu \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} R(x)=\frac{1}{2} . \tag{3.26}
\end{equation*}
$$

If $\alpha<\mu$, then (3.24) and (3.25) lead to the conclusion that there exists $0<\delta_{1}<1$ such that $M(a, b)<\alpha A(a, b)+(1-\alpha) T(a, b)$ for all $a, b>0$ with $(a-b) /(a+b) \in\left(\delta_{1}, 1\right)$.

If $\beta>1 / 2$, then (3.24) and (3.26) lead to the conclusion that there exists $0<\delta_{2}<1$ such that $M(a, b)>\beta A(a, b)+(1-\beta) T(a, b)$ for all $a, b>0$ with $(a-b) /(a+b) \in\left(0, \delta_{2}\right)$.

Remark. In [7], we proved that the double inequality

$$
\begin{equation*}
\alpha G(a, b)+(1-\alpha) T(a, b)<M(a, b)<\beta G(a, b)+(1-\beta) T(a, b) \tag{3.27}
\end{equation*}
$$

holds true for $a, b>0$ with $a \neq b$ if and only if $\alpha \geq 1 / 5$ and $\beta \leq 1-\pi /[4 \log (1+\sqrt{2})]=$ $0.108893 \cdots$.

The bounds in the double inequalities (3.1) and (3.27) are not comparable to each other. In fact, if we let $a>b>0$ and $x=\sqrt{a / b}>1$, and notate $\lambda=1-\pi /[4 \log (1+\sqrt{2})]$ and $\omega=1 /(4-\pi)[4-\pi / \log (1+\sqrt{2})]$, then

$$
\begin{equation*}
\left[\frac{1}{2} A(a, b)+\frac{1}{2} T(a, b)\right]-[\lambda G(a, b)+(1-\lambda) T(a, b)]=\frac{b}{\tan ^{-1} \frac{x^{2}-1}{x^{2}+1}} F_{1}(x) \tag{3.28}
\end{equation*}
$$

and

$$
\begin{equation*}
[\omega A(a, b)+(1-\omega) T(a, b)]-\left[\frac{1}{5} G(a, b)+\frac{4}{5} T(a, b)\right]=\frac{b}{\tan ^{-1} \frac{x^{2}-1}{x^{2}+1}} F_{2}(x) \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{1}(x)=\left(\frac{x^{2}}{4}-\lambda x+\frac{1}{4}\right) \tan ^{-1} \frac{x^{2}-1}{x^{2}+1}+\frac{2 \lambda-1}{4}\left(x^{2}-1\right) \tag{3.30}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{2}(x)=\left[\frac{\omega\left(x^{2}+1\right)}{2}-\frac{x}{5}\right] \tan ^{-1} \frac{x^{2}-1}{x^{2}+1}-\frac{\omega\left(x^{2}-1\right)}{2}+\frac{x^{2}-1}{10} \tag{3.31}
\end{equation*}
$$

respectively. Simple computations yield

$$
\begin{gather*}
F_{1}(1)=F_{1}^{\prime}(1)=F_{1}^{\prime \prime}(1)=0, F_{1}^{\prime \prime \prime}(1)=5 \lambda-1=-0.4555 \cdots<0  \tag{3.32}\\
\lim _{x \rightarrow+\infty} F_{1}(x)=\lim _{t \rightarrow 0^{+}} \frac{\left(t^{2}-4 \lambda t+1\right) \tan ^{-1} \frac{1-t^{2}}{t^{2}+1}+(1-2 \lambda)\left(t^{2}-1\right)}{4 t^{2}}=+\infty,  \tag{3.33}\\
F_{2}(1)=F_{2}^{\prime}(1)=F_{2}^{\prime \prime}(1)=0, F_{2}^{\prime \prime \prime}(1)=1-2 \omega=-0.0148 \cdots<0, \tag{3.34}
\end{gather*}
$$

and

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} F_{2}(x)=\lim _{t \rightarrow 0^{+}} \frac{\left[5 \omega\left(t^{2}+1\right)-2 t\right] \tan ^{-1} \frac{1-t^{2}}{t^{2}+1}+(1-5 \omega)\left(1-t^{2}\right)}{10 t^{2}}=+\infty \tag{3.35}
\end{equation*}
$$

Equations (3.28), (3.32) and (3.33) imply that there exist small enough $\delta_{1}>0$ and large enough $X_{1}>0$ such that $1 / 2 A(a, b)+1 / 2 T(a, b)<\lambda G(a, b)+(1-\lambda) T(a, b)$ for $\sqrt{a / b} \in\left(1,1+\delta_{1}\right)$, and $1 / 2 A(a, b)+1 / 2 T(a, b)>\lambda G(a, b)+(1-\lambda) T(a, b)$ for $\sqrt{a / b} \in\left(X_{1},+\infty\right)$.

Equations (3.29), (3.34) and (3.35) imply that there exist small enough $\delta_{2}>0$ and large enough $X_{2}>0$ such that $\omega A(a, b)+(1-\omega) T(a, b)<1 / 5 G(a, b)+4 / 5 T(a, b)$ for $\sqrt{a / b} \in$ $\left(1,1+\delta_{2}\right)$, and $\omega A(a, b)+(1-\omega) T(a, b)>1 / 5 G(a, b)+4 / 5 T(a, b)$ for $\sqrt{a / b} \in\left(X_{2},+\infty\right)$.

## References

[1] E. Neuman and J. Sándor, On the Schwab-Borchardt mean, Math Pannon, 14, 2(2003): 253-266
[2] E. Neuman and J. Sándor, On the Schwab-Borchardt mean II, Math Pannon, 2006, 17, 1(2006): 49-59
[3] Y. -M. Li and B. -Y. Long and Y. -M. Chu, Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean, J Math Inequal, 6, 4(2012): 567-577
[4] E. Neuman, A note on a certain bivariate mean, J Math Inequal. 6, 4(2012): 637-643
[5] Y. -M. Chu and T. -H. Zhao and B. -Y. Liu, Optimal bound for Neuman-Sándor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means, J Math Inequal, 8, 2(2014): 201-217
[6] E. Neuman and J. Sándor, Bounds for the quotients of differences of certain bivariate means, Adv Stud Contemp Math, 23, 1(2013): 61-67
[7] C. -R. Liu and M. -Y. Shi, Optimal Convex Combination Bounds of Geometric and Second Seiffert Means for Neuman-Sándor Mean, International Journal of Pure and Applied Mathematics, 102, 4(2015), 671-685

