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ABSTRACT 

 

Length biased distribution arise when the probability of inclusion of population unit in sample is related to 

the value of the variable measured. For example textile sampling Cox (1969). In this paper the genesis of a length 

biased Maxwell distribution has been given. The minimum risk estimators of its scale have been obtained under 

squared error, precautionary and other two loss functions with the help of a type II censored sample. The relative 

efficiencies have been calculated for the sake of comparison. 

 Keywords :-Length biased Maxwell distribution (LBMD), loss function , risk function, MMSE estimators, 

squared error loss function. 

 

1. INTRODUCTION 

In many a situation experimenters do not work with truly random sample from the population, in which they are 

interested, either by design or because of the fact that in many situations it becomes impossible to have random 

sample from the targeted population. However, since the observations do not have an equal probability of entering 

the sample, the resulting sampled distribution does not follow the original distribution. Statistical models that 

incorporate these restriction are called weighted models. The concept of weighted distribution can be traced to 

Fisher in his paper. “The study of effect of methods of ascertainment upon estimation of frequency” in 1934. Patil, 

et al. (1986) presented a list of the most common forms of the weighted functions useful in scientific and statistical 

literature as well as some basic theorems for weighted distribution the length biased sampling was developed by Cox 

(1962). Gupta and Tripathi (1996) studied the weighted version of the bivariate three parameter logarithmic series 

distribution. Khatree (1989) presented a useful technique by giving a relationship between the original random 

variable X and its length biased version Y, when X is either Inverse Gaussian or Gamma distribution. Several 

authors such as Jain, et al. (1989), Gupta and Kirmani (1990) Sinha,S.K., etc, distribution .,”Inverse Maxwell 

Distribution as a survival models, genesis and parameter estimation” which is now  to be used in the study of the 

propogation time of Dark Matter ; Singh & Srivastava (2014,a,b,c ) studied the classical and Bayesian estimation of 

size Biased Inverse Maxwell distribution studied the various length-biased distributions and expressed in relation 

with these of original distributions 

Maxwell distribution plays an important role in life testing and reliability theory. The Maxwell distribution is 

applied in physics & chemistry mainly in Statistical mechanics. Tyagi, R.K. and Bhattacharya, S.K. (1989a,b), 

considered  Maxwell distribution as a life time distribution. They obtained the minimum variance unbiased 

estimators and Bayes estimators of the parameter and reliability function of the Maxwell distribution. Chaturvedi & 

Rani(1998) obtained classical and Bayes estimates of reliability function of generalized Maxwell failure distribution, 

Singh, S.P.(2002) obtained Bayes  estimates of  parameter and Reliability function of Maxwell distribution under 

various asymmetric loss functions with censoring using different priors .Bekker & Roux (2005) explored Emperical 

Bayes estimation for Maxwell distribution. Kazmi et.al.(2012) studied the Bayesian estimation for two component 

mixture of Maxwell distribution under type-I censoring. 

If X is a random variable having the Maxwell distribution, with pdf given by: 

g(x;θ)  =  .       x > 0, θ > 0                                                                                                             (1.1) 

Where θ is scale parameter. the rth  row moments are given by                                             

  =  г( ),                                                                                                                                   (1.2) 

The mean and variance are obtained as 

 = 2 ;                                                                                                                                               (1.3) 
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And 

= ;                                                                                                                                         (1.4) 

In this paper the estimation of the parameter of the length biased Maxwell distribution is considered .Let T be a 

random variable having the length biased Maxwell distribution, its pdf comes out to be 

f (t; )  = ; t, >0                                                                                                            (1.5) 

using the  relationship  

                           f (t; ) = 
𝑡𝑔(𝑡,𝜃)

𝐸(𝑡)
 

where  follows Maxwell distribution as given in (1.1) 

Let us suppose that n items are put to test for their life times and the experiment is terminated when r( < n) 

items have failed, If t1,…,tn. denote the first r observations having common pdf as given in (1.5), then the joint pdf is 

given by:- 

f (t; )  =   t, >0;                                                                                                  (1.7) 

now if             z = [  + (n-r) ];                                                                                                                  (1.8) 

the maximum likelihood estimator (MLE)  of  may be obtained as; 

 = ;                                                                                                                                                 (1.9) 

The pdf of  is given by 

f(  = >0                                                                                                       (1.10) 

2 THE MINIMUM EXPECTED LOSS (RISK) ESTIMATOR UNDER SQUARED ERROR LOS 

FUNCTION 

The Expected loss (risk) in this case is the Mean Squared Error (MSE) now define 

                        MSE(�̂�) =∫ (�̂� − 𝜃)
2∞

0
𝑓(�̂�)𝑑�̂� 

                                       =∫ [�̂�2 − 2𝜃�̂� + 𝜃2]𝑓(�̂�)𝑑�̂�
∞

0
                                                                                                         (2.1) 

Putting the value of 𝑓(�̂�) from (1.10) we get  

                       MSE(�̂�) =∫ [�̂�2 − 2𝜃�̂� + 𝜃2]
∞

0

1

Г2r
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏𝒆𝒙𝒑 {
𝟐𝒓�̂�

𝜽
}d�̂�(2.2) 

                        MSE(�̂�) =  
𝜃2

2𝑟
                                                                                                                                    (2.3) 

 

MINIMUM MEAN SQUARE ERROR ESTIMATOR 

Let us define 

                         θ*=M�̂�                                                                                                                                              (2.4) 

Now  

                       MSE (θ*) = Eθ (θ*- 𝜃)2 = Eθ(M�̂�- 𝜃)2 

                                       = M2Eθ(�̂�2)-2θMEθ(�̂�)+θ2     (2.5)  

                           
dMSE (θ∗) 

𝑑𝑀
 = 2 MEθ(�̂�2)-2θ Eθ(�̂�) 

                       
 𝑑2MSE (θ∗) 

𝑑𝑀2  = 2E(�̂�2) ≥ 0 

and 

dMSE (θ∗) 

𝑑𝑀
 = 0 leads to absolute minimum of MSE (θ*)  

Now      M = 
2𝑟

2𝑟+1
                                                                                                                                     (2.6) 

Here we see that M is independent of θ   
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Now         θ* = 
𝑧

2𝑟+1
                                                                                                                                        (2.7) 

     is MMSEE of θ  

 The relative efficiencies of the estimator θ*  with respect to �̂� is defined as 

Rel.eff.(𝜃∗ / �̂�)  =  
MSE(�̂�)

MSE ( 𝜃∗)
=1+

1

2𝑟
>1;    for    r≥1                                                                                              (2.8) 

3.THE MINIMUM EXPECETED LOSS (RISK) ESTIMATORS PRECAUTIONARY  LOSS FUNCTION  

This loss function was introduced by Norstrom(1996) ,is a very useful and simple precautionary loss function is   

given as 

L(∆) = 
(�̂�−𝜃)

�̂�

2

                                                                                                                                                 (3.1) 

The risk function of MLE  �̂� under  precautionary  loss functio ,denoted by RP(�̂�) is defined as 

                            RP(�̂�) =E(L(∆)) =∫
(�̂�−𝜃)

�̂�

2
∞

0
𝑓(�̂�)𝑑�̂�                                                                                       (3.2) 

 On using (1.10) we get 

                                RP(�̂�)= ∫ (�̂� +
𝜃2

�̂�
− 2𝜃)

∞

0

1

Г2r
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏𝒆𝒙𝒑 {
𝟐𝒓�̂�

𝜽
}d�̂� 

     RP(�̂�)= [
𝜃

(2𝑟−1)
]                                                                                                                               (3.3) 

Similarly the risk function under  precautionary  loss function  for  θ* is given by, (where  θ*=M�̂� and  ∆ =( θ*- 𝜃)) 

 

                         RP(θ*) =∫
(𝜃∗−𝜃)

𝜃∗

2∞

0
𝑓(�̂�)𝑑�̂� =∫ (𝜃∗ +

𝜃2

𝜃∗ − 2𝜃)
∞

0
 𝑓(�̂�)𝑑�̂� 

                                   =
𝟏

Г𝟐𝒓
∫ (𝑀�̂� +

𝜃2

𝑀�̂�
− 2𝜃)

∞

0
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏𝒆𝒙𝒑 {
−𝟐𝒓�̂�

𝜽
}d�̂� 

                        RP(θ*) = 𝜃[M + 
2𝑟

𝑀(2𝑟−1)
− 2]                                                                                                             (3.4) 

In order to get the value of M that minimizes RP(θ*) we proceed as follows- 

                      
𝑑

 𝑑𝑀
RP(θ*) = 𝜃 [M +

2𝑟

𝑀(2𝑟−1)
− 2]=0 

Where M = (
2𝑟

2𝑟−1
)

1

2
                                                                                                                                       3.5) 

Now     
𝑑2MSE (θ

∗) 

𝑑𝑀2  =  
4𝑟𝜃

(2𝑟−1)𝑀3> 0 

Thus the value of M obtained in (3.5) will lead to absolute minimum of RP(θ*) .here we see that M doesn’t depend 

on any unknown parameter so its exact value is determined. 

Define the relative efficiency as 

  Rel.eff.(𝜃∗ / �̂�) =
MSE(�̂�)

MSE ( 𝜃∗)
 =

[
1

(2𝑟−1)
]

[M+
2𝑟

𝑀(2𝑟−1)
−2]

                                                                                                 (3.6) 

1

(2𝑟−1)
≥2(√

2𝑟

2𝑟−1
  − 1)                                                                                                                             (3.7) 

              r≥
1

2
    which is always true. 

 In order to have the Rel.eff.(
 𝜃∗

�̂�
)>1 

4 THE MINIMUM EXPECTED LOSS (RISK) ESTIMATOR UNDER OTHER LOSS FUNCTION (I) 

A useful Loss function is given by 

            L(∆) =(
�̂�

𝜃
− 1)

2

                                                                                                                                          (4.1) 

Risk function under L( )  of MLE ̂  is denoted by RA(�̂�)  as 
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               RA(�̂�) =E(L(∆)) =∫ (
�̂�

𝜃
− 1)

2
∞

0
𝑓(�̂�)𝑑�̂� 

               RA(�̂�) = ∫ (
�̂�2

𝜃2 −
2�̂�

𝜃
+ 1)

∞

0

1

Г2r
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏exp {
𝟐𝐫θ̂

𝛉
}d�̂� 

RA(�̂�) = [
1

2𝑟
]                                                                                                                                           (4.2) 

Let us define θ*=M�̂�                                                                                                                                              (4.3) 

                 RA(θ*) =∫ (
�̂�

𝜃
− 1)

2
∞

0
𝑓(�̂�)𝑑�̂� =∫ (

�̂�2

𝜃2 −
2�̂�

𝜃
+ 1)

∞

0
𝑓(�̂�)𝑑�̂� 

                            =
𝟏

Г𝟐𝒓
∫ (

Mθ̂
2

θ
2 −

2Mθ̂

θ
+ 1)

∞

0
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏exp {
𝟐𝒓�̂�

𝜽
}d�̂� 

RA(θ*) = [
𝑀2(2𝑟+1)

2𝑟
− 2𝑀 + 1]                                                                                                                   (4.4) 

Now in order to M lead to minimum of  RA(θ*) .we must have, 

                   
 𝑑𝑅𝐴(𝜃∗) 

𝑑𝑀
=

2𝑀(2𝑟+1)

2𝑟
− 2 = 0 

Which leads  to the value of M as 

                   M=
2𝑟

2𝑟+1
                                                                                                                                                   (4.5) 

We see that M does not depend on any known parameter so its exact value  may be obtained and it leads to absolute 

minimum of  RA(θ*) since 

𝑑2𝑅𝐴(𝜃∗) 

𝑑𝑀2  =  
(2𝑟+1)

2𝑟
> 0                                                                                                                                          (4.6) 

Define the relative efficiency of 𝜃∗  with respect to �̂� as 

Rel.eff.(𝜃∗ / �̂�)  =  
MSE(�̂�)

MSE ( 𝜃∗)
=

1

2𝑟
𝑀2(2𝑟+1)

2𝑟
−2𝑀+1

                                                                                                        (4.7) 

1

2𝑟
>

1

2𝑟+1
                                                                                                                                                            (4.8) 

 In order to have the Rel.eff.(
 𝜃∗

�̂�
) >  1 

 

5. THE MINIMUM EXPECTED LOSS(RISK) ESTIMATOR UNDER OTHER LOSS FUNCTION (I) 

 A useful Loss function is given by  

L(∆) =(
𝜃

�̂�
− 1)

2

                                                                                                                                       (5.1) 

Risk function under L( )  of MLE ̂  is denoted by RB(�̂�)  as 

                RB(�̂�) =E(L(∆)) =∫ (
𝜃

�̂�
− 1)

2∞

0
𝑓(�̂�)𝑑�̂� 

              RB(�̂�) = ∫ (
𝜃2

�̂�2 −
2𝜃

�̂�
+ 1)

∞

0

1

Г2r
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏exp {
𝟐𝐫θ̂

𝛉
}d�̂� 

 

               RB(�̂�) =[
(2𝑟)2

(2𝑟−1)(2𝑟−2)
−

4𝑟

(2𝑟−1)
+ 1] (5.2) 
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Let us define θ*=M�̂�                                                                                                                                             (5.3) 

             RB(θ*) =∫ (
𝜃

𝜃∗ − 1)
2∞

0
𝑓(�̂�)𝑑�̂� =∫ (

𝜃2

𝜃∗2 −
2𝜃

𝜃∗ + 1)
∞

0
𝑓(�̂�)𝑑�̂� 

 

                     =  
𝟏

Г𝟐𝒓
∫ (

𝜃2

(𝑀 �̂�)2 −
2𝜃

 M�̂�
+ 1)

∞

0
{

𝟐𝒓

𝜽
}

𝟐𝒓

�̂�𝟐𝒓−𝟏exp {
𝟐𝒓�̂�

𝜽
}d�̂� 

                 RB(θ*)  =  [
(2𝑟)2

(2𝑟−1)(2𝑟−2)𝑀2 − 
4𝑟

𝑀(2𝑟−1)
+ 1]                                                                                              (5.4) 

Now in order to M lead to minimum of  RB(θ*) .we must have, 

              
𝑑𝑅𝐵(𝜃∗) 

𝑑𝑀
=− 

2(2𝑟)2

(2𝑟−1)(2𝑟−2)𝑀3 + 
4𝑟

(2𝑟−1)𝑀2 = 0 

Which leads  to the value of M as 

M  = 
𝑟

(𝑟−1)
, r>1                                                                                                                                              (5.5) 

We see that M does not depend on any known parameter so its exact value  may be obtained and it leads to absolute 

minimum of  RB(θ*) since 

𝑑2𝑅𝐵(𝜃∗) 

𝑑𝑀2    =
6(2𝑟)2

(2𝑟−1)(2𝑟−2)𝑀4 +  
8𝑟

(2𝑟−1)𝑀3> 0                                                                                

𝑑2𝑅𝐵(𝜃∗) 

𝑑𝑀2 =
4(𝑟−1)3

(2𝑟−1)𝑟2>0       for       r>1                                                                                                                       (5.6) 

Define the relative efficiency of 𝜃∗  with respect to �̂� as 

 Rel.eff𝜃∗/�̂�) =
MSE(�̂�)

MSE ( 𝜃∗)
=

[
(2𝑟)2

(2𝑟−1)(2𝑟−2)
−

4𝑟
(2𝑟−1)

+1]

[
(2𝑟)2

(2𝑟−1)(2𝑟−2)𝑀2− 
4𝑟

𝑀(2𝑟−1)
+1] 

 

  Rel.eff.(𝜃∗ / �̂�)  =  
𝑟+1

𝑟−1
> 1                                                                                                                                  (5.7) 

In order to have the Rel.eff.(𝜃∗ / �̂�)  > 1 

 

 

 

TABLE 

 

Precautionary loss  function                           Loss function-1                            Loss function-2 
R M      Rei.eff.          M1        Rei.eff.          M2      Rei.eff. 

5 1.054093 1.027046 

 

0.909091 

 

1.100000 

 

1.250000 

 

1.500000 

 

10 1.025978 

 

1.012989 

 

0.952381 

 

1.050000 

 

1.111111 

 

1.222222 

 

15 1.017095 

 

1.008548 

 

0.967742 

 

1.033333 

 

1.071429 

 

1.142857 

 

20 1.012739 

 

1.006370 

 

0.975610 

 

1.025000 

 

1.052632 

 

1.105263 

 

25 1.010153 

 

1.005076 

 

0.980392 

 

1.020000 

 

1.041667 

 

1.083333 

 

30 1.008439 

 

1.004220 

 

0.983607 

 

1.016667 

 

1.034483 

 

1.068965 
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35 1.007220 

 

1.003610 

 

0.985915 

 

1.014286 

 

1.029412 

 

1.058824 

 

40 1.006309 

 

1.003155 

 

0.987654 

 

1.012500 

 

1.025641 

 

1.051282 

 

45 1.005602 

 

1.002801 

 

0.989011 

 

1.011111 

 

1.022727 

 

1.045455 

 

50 1.005038 

 

1.002519 

 

0.990099 

 

1.010000 

 

1.020408 

 

1.040816 

 

55 1.004577 

 

1.002288 

 

0.990991 

 

1.009091 

 

1.018519 

 

1.037037 

 

60 1.004193 

 

1.002097 

 

0.991736 

 

1.008333 

 

1.016949 

 

1.033898 

 

65 1.003868 

 

1.001934 

 

0.992366 

 

1.007692 

 

1.015625 

 

1.031250 

 

70 1.003591 

 

1.001795 

 

0.992908 

 

1.007143 

 

1.014493 

 

1.028986 

 

75 1.003350 

 

1.001675 

 

0.993378 

 

1.006667 

 

1.013514 

 

1.027027 

 

80 1.003140 

 

1.001570 

 

0.993789 

 

1.006250 

 

1.012658 

 

1.025316 

 

85 1.002954 

 

1.001477 

 

0.994152 

 

1.005882 

 

1.011905 

 

1.023810 

 

90 1.002789 

 

1.001395 

 

0.994475 

 

1.005556 

 

1.011236 

 

1.022472 

 

95 1.002642 

 

1.001321 

 

0.994764 

 

1.005263 

 

1.010638 

 

1.021411 

 

100 1.002509 1.001255 0.995025 1.005000 1.010101 1.020320 

 

Conclusion 
Thus  𝜃∗ is most efficient in its class for all values of r when precautionary loss function is the criterion of selection 

of the estimator. 

 

In tables 1 and 2 the exact values of M (since M do not depend on any unknown parameter) have been tabulated 

along with the relative efficiencies of the MELO estimators 
* with respect to MLE ̂ , under precautionary and 

other two asymmetric loss functions. These tables show that MELO estimator 
* is preferable to ̂  for all practical 

purposes.. These MELO estimators 
*  uniformly dominates the MLE ̂  as the Rel. eff.( 

* / ̂ ) > 1 (inequalities 

(2.8),  (3.7),  (4.8), and are always true). 

 The estimator 
* defined is (2.7) is MMSE estimator which always dominates ̂  . 
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