Some Star related I-cordial graphs

T.Nicholas¹ and P.Maya²

1. Department of Mathematics

St. Jude's College Thoothoor – 629176 Kanyakumari, Tamil Nadu, India.

Department of Mathematics
 Ponjesly College of Engineering
 Nagercoil - 629003, Tamil Nadu, India.

Abstract

An *I*-cordial labeling of a graph G = (V, E) is an injective map f from V to $\left[-\frac{p}{2}..\frac{p}{2}\right]^*$ or $\left[-\frac{p}{2}\right]..\left[\frac{p}{2}\right]$ as p is even or odd, respectively be an injective mapping such that $f(u)+f(v)\neq 0$ and induces an edge labeling $f^*\colon E\to \{0,1\}$ where, $f^*(uv)=1$ if f(u)+f(v)>0 and $f^*(uv)=0$ otherwise, such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has *I*-cordial labeling, then it is called *I*-cordial graph. In this paper, we prove that $B_{m,n}$, $S'(B_{n,n})$, $D_2(B_{m,n})$ are *I*-cordial; $K_{n,n}$ is *I*-cordial only if n is even; $K_{m,n}$ is *I*-cordial only if m or n is even and $B_{n,n}^2$ is not *I*-cordial.

Notation: Here $[-x..x] = \{t/t \text{ is an integer and } |t| \le x\}$ and $[-x..x]^* = [-x..x] - \{0\}$.

Key Words: Cordial labeling; I-cordial labeling.

AMS Mathematical Subject Classification (2010): 05C78.

1. INTRODUCTION

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An *I*-cordial labeling of a graph G (V, E) is an injective map f from V to $\left[-\frac{p}{2}..\frac{p}{2}\right]^*$ or $\left[-\frac{p}{2}\right] \cdot \cdot \cdot \cdot \left[\frac{p}{2}\right]$ as p is even or odd, respectively be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^*: E \to \{0, 1\}$ where, $f^*(uv) = 1$ if f(u) + f(v) > 0 and $f^*(uv) = 0$ otherwise, such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1. If a graph has I-cordial labeling, then it is called I-cordial graph. The concept of cordial graph originated from I.Cahit [1,2] in 1987 as a weaker version of graceful and harmonious graphs and was based on {0,1} binary labeling of vertices.

Let f: V \rightarrow {0, 1} be a mapping that induces an edge labeling \bar{f} : E \rightarrow {0, 1} defined by $\overline{f}(uv) = |f(u) - f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$, where $v_f(i)$ and $e_f(i)$, i=0,1 are the number of vertices and edges of G respectively with label i (under fand f respectively). A graph G is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) K_n is cordial if and only if $n \le 3$ (iii) $K_{r,s}$ is cordial for all r and s (iv) the wheel W_n is cordial if and only if $n \equiv 3 \pmod 4$ (v) C_n is cordial if and only if $n \not\equiv 2 \pmod 4$ (vi) an Eulerian graph is not cordial if its size is congruent to 2 modulo 4.

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which mK_n is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Peterson graphs that are cordial are characterised in [7]. Ho et.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho [7] determined the cordiality of $C_m^{(n)}$; the one–point union of n copies of C_m . Several constructions of cordial graphs were proposed in [10-12, 15-19]. Other results and open problems concerning cordial graph are seen in [2, 5]. Other types of cordial graphs were considered in [3, 4, 8, 21]. Vaidya et.al [22] has also discussed the cordiality of various graphs.

Definition 1.1 [24]

Let f be a binary edge labeling of graph $G = \{V, E\}$ and the induced vertex labeling is given by $f(v) = \sum_{\forall u} f(u,v) \pmod{2}$ where $v \in V$ and $\{u,v\} \in E$. f is called an **E-cordial** labeling of G if $|e_f(0) - e_f(1)| \le 1$ and $|v_f(0) - v_f(1)| \le 1$, where $e_f(0)$ and $e_f(1)$ denote the number of edges, and $v_f(0)$ and $v_f(1)$ denote the number of vertices with 0's and 1's respectively. The graph G is called **E-cordial** if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [24] have introduced E-cordial labeling as a weaker version of edge–graceful labeling. They proved that the trees with n vertices, K_n , C_n are E-cordial if and only if $n\not\equiv 2 \pmod{4}$ while $K_{m,n}$ admits E-cordial labeling if and only if $m+n\not\equiv 2 \pmod{4}$.

Definition 1.2 [21]

A **prime cordial labeling** of a graph G with vertex set V is a bijection f from V to $\{1, 2, 3, \ldots, |V|\}$ where each edge uv is assigned the label 1 if gcd (f(u), f(v)) = 1 and 0 if gcd (f(u), f(v)) > 1, such that the number of edges having label 0 and edges having label 1 differ by at most 1.

Sundaram et.al. [20] introduced the notion of prime cordial labeling. They proved the following graphs are prime cordial: C_n if and only if $n \ge 6$; P_n if and only if $n \ne 3$ or 5; $K_{1,n}(n, odd)$; the graph obtained by subdividing each edge of $K_{1,n}$ if and only if $n \ge 3$; bi-stars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders. J. Babujee and L.Shobana [23] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $K_{1,n}$: $K_{1,n}$:

In this paper, we prove that $B_{m,n}$, $S'(B_{n,n})$, $D_2(B_{m,n})$ are *I*-cordial; $K_{n,n}$ is *I*-cordial only if n is even; $K_{m,n}$ is *I*-cordial only if m or n is even and $B_{n,n}^{2}$ is not *I*-cordial

Notation. 1.3

- (i) $[-x..x] = \{t/t \text{ is an integer and } |t| \le x\}$
- (ii) $[-x..x]^* = [-x..x] \{0\}$

2. Main Results

3. Definition.2.1

Let G = (V,E) be a simple connected graph with p vertices. Let $f: V \to \left[-\frac{p}{2}..\frac{p}{2}\right]^*$ or $\left[-\left[\frac{p}{2}\right]..\left[\frac{p}{2}\right]\right]$ as p is even or odd respectively be an injective mapping such that $f(u) + f(v) \neq 0$ and induces an edge labeling $f^*: E \to \{0, 1\}$ such that $f^*(uv) = 1$, if f(u) + f(v)

> 0 and f(uv) = 0 otherwise. Let $e_f(i) =$ number of edges labeled with i, where i = 0 or 1. f is said to be *I*-cordial if $|e_f(0) - e_f(1)| \le 1$. A graph G is called *I*-cordial if it admits a *I*-cordial labeling.

Fig 1. I-cordial Graph

Theorem 2.2[16] Let G be a (p, q) graph where p is even. Then G is I-cordial only if d(v)1, for any vertex $v \in V(G)$.

Theorem 2.3[16] Let G be a (p, q) graph where p is odd. If there exist two vertices u and v such that d(u) = p - 1 = d(v). Then G is not an *I*-cordial.

Theorem 2.4 $B_{m,n}$ is I-cordial.

Proof. $B_{m,n}$ has (m + n + 2) vertices and (m + n + 1) edges. Let u be the vertices of degree m and v be the vertices of degree n, such that uv is a common edge in $B_{m,n}$. Let $u_1,\,u_2,\,\ldots\,,\,u_m$ denote the vertices adjacent to u and $v_1,\,v_2,\,\ldots,\,v_n$ denote the vertices adjacent to u in $B_{m,n}$. Then $E(B_{m,n}) = \{uv\} U A U B$, where $A = \{uu_i\}_{i=1}^m$ and $B = \{uv_i\}_{i=1}^n$.

CASE1. Both m and n are even or m and n are odd.

Let $f:V \to \left[\frac{-(m+n+2)}{2}$. $\cdot \frac{(m+n+2)}{2}\right]^*$ be a mapping defined by f(u)=-1 and f(v)=2, $f(u_1)=-2,$ $f(v_1) = 1$. The other vertices $\{u_2, u_3, \ldots, u_m, v_2, \ldots, v_n\}$ can be arranged with the labels,

 $\{-(n+1), \ldots, -4, -3, 3, 4, \ldots, (n+1)\}$ in such a way that the vertices are given positive and negative labels. Since, f(u) = -1 and $f(u_1) = -2$, the edge $f^*(uu_1) < 0$. Similarly, f(v) = 2 and $f^*(uv) = -1$, so that $f^*(vv_1) > 0$ and $f^*(uv) > 0$. Therefore, $e_f(1) = e_f(0) + 1$. Since, positive and negative integers are equally shared among the other vertices, the other edges equally shares positive and negative labels. That is, $e_f(0) = e_f(1)$. Hence, $|e_f(0) - e_f(1)| = 1$.

CASE 2. m is odd and n is even.

We define $f: V \to \left[-\left(\frac{m+n+2}{2}\right)...\left(\frac{m+n+2}{2}\right)\right]$ as f(u) = -1, f(v) = 0 and $f(v_1) = 1$, so that $f^*(uv) < 0$ and $f^*(vv_1) > 0$. Therefore, $e_f(0) = e_f(1)$. The other vertices $u_1, u_2, \ldots, u_m, v_1, v_2, \ldots, v_n$ can be labeled by the integers $-2, -3, \ldots, --\left(\frac{m+n+2}{2}\right), 2, 3, \ldots, \left(\frac{m+n+2}{2}\right)$ can be arranged such that the vertices receives positive and negative integers. Therefore, the edges equally shares positive and negative labels. That is, $e_f(0) = e_f(1)$. Hence, $|e_f(0) - e_f(1)| = 0$. Both cases imply $|e_f(0) - e_f(1)| \le 1$. Hence, G is I-cordial.

Fig. 2 $B_{5,7}$ is I-cordial.

Definition 2.5 For a graph G the *splitting graph* S'(G) of a graph G is obtained by adding a new vertex v' corresponding to each vertex v of G such that N(v) = N(v').

Note. The graph $S'(B_{n,n})$ is obtained from $B_{n,n}$ by adding the vertices u', v', u_i', v_i' corresponding to u, v, u_i, v_i where $1 \le i \le n$. Then $E(G) = \{uv, uv', u'v, uu_i', uu_i, u'u_i, vu_i', vv_i, v'v_i ; 1 \le i \le n\}$.

Theorem 2.6 $S'(B_{n,n})$ is an I-cordial graph.

Proof. Here p = 4(n+1) and q = 3(2n+1). We define $f: V \rightarrow [-2(n+1) . . . 2(n+1)]^*$ as, f(u) = 2; $f(u_1') = 1$; $f(u_i') = (i+1)$, $2 \le i \le n$; $f(u_i) = n+1+i$, $1 \le i \le n$; f(u') = 2(n+1); f(v) = -1; $f(v_i') = -(i+1)$, $1 \le i \le n$; $f(v_i) = -(n+1+i)$, $1 \le i \le n$; f(v') = -f(u').

Then $f^*(uu_i') > 0$, $f^*(uu_i) > 0$, $f^*(u'u_i) > 0$ for all $i=1,\,2,\,\ldots$, n and $f^*(vv_i') < 0$, $f^*(vv_i) < 0$, $f^*(v'v_i) < 0 \text{ for all } i=1,\,2,\,\ldots$, n. Here $|e_f(0)-e_f(1)|=0$. Since, f(u)=2, f(v)=-1, f(u')=2(n+1) and f(v')=-2(n+1). We have $f^*(uv)>0$, $f^*(uv')<0$ and $f^*(vu')>0$. Hence $|e_f(0)-e_f(1)|=1$.

Thus $|e_f(0) - e_f(1)| \le 1$. Hence $S'(B_{n,n})$ is an *I*-cordial.

Fig. 3 $S'(B_{5,5})$ is *I*-cordial

Definition 2.7 The *shadow graph* $D_2(G)$ of a connected graph G is constructed by taking two copies of G say G' and G". Join each vertex u' in G' to the neighbors of the corresponding vertex v' in G".

Note. Consider two copies of $B_{n,n}$. Let $\{u, v, u_i, v_i; 1 \le i \le n \}$ and $\{u', v', u_i', v_i'; 1 \le i \le n \}$ be the corresponding vertex set of each copy of $B_{n,n}$. Let G be the graph $D_2(B_{n,n})$ and $E(G) = \{uv, uv', u'v, u'v', uu_i, u'u_i, vv_i, v'v_i; 1 \le i \le n \}$ then p = 4(n+1) and q = 4(2n+1).

Theorem 2.8 $D_2(B_{n,n})$ is I-cordial.

Proof. We define vertex labeling $f: V \rightarrow [-2(n+1) . . . 2(n+1)]^*$ as f(u) = 1; f(u') = -1; $f(u_i) = -(i+1)$, $1 \le i \le n$; $f(u_{i'}) = f(v_n) - i$, $1 \le i \le n$; f(v) = 2(n+1); f(v') = -2(n+1); $f(v_i) = -(i+1)$, $1 \le i \le n$; $f(v_i) = f(u_n) + i$, $1 \le i \le n$.

$$\begin{split} &\text{Then } f^*(uu_i)>0; \ f^*(u'u_i')>0; \ f^*(uui')>0; \ f^*(u'u_i)>0 \ \text{and} \ f^*(vv_i)<0 \ ; \ f^*(v'v_i)<0 \ \text{for all} \ i=1,2,\\ &\dots, \ n. \ \text{Hence} \ |e_f(0)-e_f(1)|=0. \ \text{Also,} \ f^*(uv)>0, \ f^*(u'v)>0, \ f^*(uv')<0, \ f^*(uv')<0. \end{split}$$

Therefore, $D_2(B_{n,n})$ admits I-cordial.

Fig. 4 $D_2(B_{6,6})$ is I-cordial

Theorem 2.9 $B_{n,n}^2$ is not I-cordial graph.

Proof. Consider $B_{n,n}$ with vertex set $\{u, v, u_i, v_i, 1 \le i \le n\}$ where u_i, v_i are pendant vertices. Let G be the graph $B_{n,n}^2$ and $E(G) = \{uv, vv_i, u_i, uv_i, vu_i, 1 \le i \le n\}$, then p = 2(n+1) and q = 4n + 1. Since the vertices u and v are adjacent to u_i 's and v_i 's for all $i = 1, 2, \ldots, n$. That is, d(u) = d(v) = p-1. Then by Theorem 2.2.3, G is not I-cordial.

Theorem. 2.10 The complete bipartite graph $K_{n,n}$, $n \ge 2$ is I-cordial only if n is even.

Proof. Let $G = K_{n,n}$ be a complete bipartite graph with the partitions $\{U, V\}$ where $U = \{u_1, u_2, ..., u_n\}$ and $V = \{v_1, v_2, ..., v_n\}$. Then p = 2n and $q = n^2$. We define $f: V \rightarrow [-n..n]^*$ as follows:

$$f(u_i) = \begin{cases} -\left(\frac{i+1}{2}\right) \text{ if } i \text{ is odd}; 1 \le i \le n \\ \frac{i}{2} \text{ if } i \text{ is even}; 1 \le i \le n \end{cases}$$

$$f(v_i) = \begin{cases} -\left(\frac{n+i+1}{2}\right) & \text{if } i \text{ is odd} ; 1 \le i \le n \\ \left(\frac{n+i}{2}\right) & \text{if } i \text{ is even} ; 1 \le i \le n \end{cases}$$

Then $f^*(u_1v_i) > 0$ for all i = 1, 3, 5, ..., n-1 and $f^*(u_1v_i) < 0$ for all i = 2, 4, 6, ..., n. Hence n/2 edges with positive labels are incident with u_1 . Similarly, n/2 edges with negative labels are incident with u_1 . Similar argument holds for all n edges. That is $e_f(0) = e_f(1) = n^2/2$. Hence $|e_f(0) - e_f(0)| = 0$. Thus G is I-cordial when n is even.

Fig. 5
$$K_{6,6}$$
 is I-cordial

Conversly, when n is odd, the labels cannot be shared between the two partite sets in such a way that same labels of different parity lies in different partite sets. Hence $K_{n,n}$ is not an I-cordial graph when n is odd.

Theorem 2.11 The bipartite graph $K_{m,n}$ is I-cordial if and only if both m and n are not odd.

Proof. Consider a bipartite graph $K_{m,n}$ with $\{U,V\}$ vertices where $U=\{u_1,u_2,u_3....u_m\}$ and $V=\{v_1,v_2,v_3,...,v_n\}$. Then p=m+n and q=mn.

CASE 1.m is even and n is odd.

We define $f: V \to \left[-\left(\frac{m+n-1}{2}\right) ... \left(\frac{m+n-1}{2}\right) \right]$ as follows:

$$f(u_i) = \begin{cases} \frac{i+1}{2} & \text{if i is odd; } 1 \leq i \leq m \\ -\frac{i}{2} & \text{if i is even; } 1 \leq i \leq m \end{cases}$$

$$f(v_i) \ = \ \begin{cases} \frac{m+i+1}{2} & \text{if i is odd} \; ; \quad 1 \leq i \leq n \\ -\frac{m+i}{2} & \text{if i is even} \; ; \quad 1 \leq i \leq n \end{cases}$$

$$f(v_n) = 0$$

Then $f^*(u_1v_i) > 0$ for all $i = 1,3,5,\ldots,n$ and $f^*(u_1v_i) < 0$ for all $i = 2,4,6,\ldots,n-1$.

Similar argument holds for all m and n vertices in $K_{m,n}$. Thus, $\frac{q}{2}$ edges equally shares label 0 and 1. That is, $e_f(0) = e_f(1) = \frac{q}{2}$. Hence $|e_f(0) - e_f(1)| = 0$.

CASE 2.m and n are even.

We define $f: V \to \left[-\left(\frac{m+n}{2}\right)..\left(\frac{m+n}{2}\right)\right]^*$, the labeling as follows:

$$f(u_i) = \begin{cases} \frac{i+1}{2} & \text{if i is odd ; } 1 \leq i \leq m \\ -\frac{i}{2} & \text{if i is even ; } 1 \leq i \leq m \end{cases}$$

$$f(v_i) \ = \ \begin{cases} \frac{m+i+1}{2} & \text{if i is odd}; \ 1 \le i \le n \\ -\frac{m+i}{2} & \text{if i is even}; \ 1 \le i \le n \end{cases}$$

As in Case 1, $\frac{q}{2}$ edges equally share label 0 and 1. That is, $e_f(0) = e_f(1) = \frac{q}{2}$.

Hence $|e_f(0)-e_f(1)|=0$.

Conversly, suppose both m and n are odd. Then m + n is even, say 2k. The labels cannot be shared between the two partite set in such a way that same label of different parity lies in different partite sets. Therefore $K_{m,n}$ is not I-cordial if m and n are odd.

Fig. 6 $K_{4,6}$ is I-cordial.

References:

- [1] I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.
- [2] I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim, 1990, pp. 209-230.
- I. Cahit, H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.
- [4] G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.
 - J.A.Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 5 (2000) 1-79.
- Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and [6] composition of graphs, Ars Combin.29 (1990) 169-180.
- Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized [7] Peterson graphs, Congr. Numer 68(1989) 109-122.
- [8] M.Hovey, A-Cordial Graphs, Discrete Math.1991 (3), pp 183-194.
- [9] F.Harary, Graph Theory, Addison-Wesly, Reading Mass 1972.
- [10] W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.

- [11] W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) 127 138.
- [12]W.W.Kirchherr,Algebraic approaches to cordial labeling, Graph Theory, CombinatoricsAlgorithms and applications, Y. Alavi,et.al(Eds.)SIAM, Philadelphia, PA, 1991, pp 294 299.
- [13] S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of mK_n Discrete math. 169 (1997) 1-3.
- [14] Y.H.Lee , H.M. Lee , G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263 273.
- [15] S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs,

 ArsCombin. 32 (1991) 209-214.
 - [16] T.Nicholas and P.Maya, Some results on *I*-cordial graph, communicated.

- [17] E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 254.
- [18] S.C.Shee, The cordiality of the path union of n copies of a graph, Discrete Math., 151 (1996) 221-229.

- [19] S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math.117 (1993) 225-243.
- [20] M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373 393
- [21] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print
- [22] S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling forsome star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.
- [23] J B Babujee and L Shobana, Prime and Prime cordial labeling for special graphs, Int. J. Contemp. Math Sciences 5, (2010), 2347 2356.
- [24] R.Yilmaz and I.Cahit, "E-Cordial graphs", ArsCombin., Vol 46, pp.251 266, 1997.