## Some Star related I-cordial graphs

T.Nicholas ${ }^{1}$ and P.Maya ${ }^{2}$

1. Department of Mathematics

St. Jude's College Thoothoor - 629176
Kanyakumari, Tamil Nadu, India.

> 2. Department of Mathematics Ponjesly College of Engineering Nagercoil - 629003, Tamil Nadu, India.


#### Abstract

An I-cordial labeling of a graph $G=(V, E)$ is an injective map $f$ from $V$ to $\left[-\frac{p}{2} . \frac{\mathrm{p}}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as $p$ is even or odd, respectively be an injective mapping such that $f(u)+f(v) \neq 0$ and induces an edge labeling $\mathrm{f}^{*}: \mathrm{E} \rightarrow\{0,1\}$ where, $\mathrm{f}^{*}(\mathrm{uv})=1$ if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})>0$ and $\mathrm{f}^{*}(\mathrm{uv})=0$ otherwise, such that the number of edges labeled with1and the number of edges labeled with 0 differ at most by 1 . If a graph has I-cordial labeling, then it is called I-cordial graph.In this paper, we prove that $\mathrm{B}_{\mathrm{m}, \mathrm{n}}, \mathrm{S}^{\prime}\left(\mathrm{B}_{\mathrm{n}, \mathrm{n}}\right), \mathrm{D}_{2}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}\right)$ are $I$-cordial; $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is $I$-cordial only if n is even ; $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is $I$-cordial only if m or n is even and $\mathrm{B}_{\mathrm{n}, \mathrm{n}}{ }^{2}$ is not $I$-cordial.


Notation: Here $[-\mathrm{x} . . \mathrm{x}]=\{\mathrm{t} / \mathrm{t}$ is an integer and $|\mathrm{t}| \leq \mathrm{x}\}$ and $[-\mathrm{x} . . \mathrm{x}]^{*}=[-\mathrm{x} . . \mathrm{x}]-\{0\}$.

Key Words: Cordial labeling; I-cordial labeling.

AMS Mathematical Subject Classification (2010): 05C78.

## 1. INTRODUCTION

By a graph we mean a finite undirected graph without loops and multiple edges. For terms not defined here we refer to Harary [9].

An I-cordial labeling of a graph $G(V, E)$ is an injective map $f$ from $V$ to $\left[-\frac{p}{2} . . \frac{\mathrm{p}}{2}\right]^{*}$ or $\left.\left[-\left\lfloor\frac{p}{2}\right\rfloor . . \left\lvert\, \frac{p}{2}\right.\right\rfloor\right]$ as $p$ is even or odd, respectively be an injective mapping such that $f(u)+f(v) \neq 0$ and induces an edge labeling $\mathrm{f}^{*}: \mathrm{E} \rightarrow\{0,1\}$ where, $\mathrm{f}^{*}(\mathrm{uv})=1$ if $\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})>0$ and $\mathrm{f}^{*}(\mathrm{uv})=0$ otherwise, such that the number of edges labeled with 1 and the number of edges labeled with 0 differ at most by 1 . If a graph has $I$-cordial labeling, then it is called I-cordial graph. The concept of cordial graph originated from I.Cahit [1,2] in 1987 as a weaker version of graceful and harmonious graphs and was based on $\{0,1\}$ binary labeling of vertices.

Let $\mathrm{f}: \mathrm{V} \rightarrow\{0,1\}$ be a mapping that induces an edge labeling $\overline{\mathrm{f}}: \mathrm{E} \rightarrow\{0,1\}$ defined by $\bar{f}(u v)=|f(u)-f(v)|$. Cahit called such a labeling cordial if the following condition is satisfied: $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, where $v_{f}(i)$ and $e_{f}(i), \quad i=0,1$ are the number of vertices and edges of $G$ respectively with label i (under fand $\bar{f}$ respectively). A graph $G$ is called cordial if it admits cordial labeling.

In [1], Cahit showed that (i) every tree is cordial (ii) $\mathrm{K}_{\mathrm{n}}$ is cordial if and only if $\mathrm{n} \leq 3$ (iii) $\mathrm{K}_{\mathrm{r}, \mathrm{s}}$ is cordial for all r and s (iv) the wheel $\mathrm{W}_{\mathrm{n}}$ is cordial if and only if $\mathrm{n} \equiv 3(\bmod 4)(\mathrm{v}) \mathrm{C}_{\mathrm{n}}$ is cordial if and only if $\mathrm{n} \not \equiv 2(\bmod 4)(\mathrm{vi})$ an Eulerian graph is not cordial if its size is congruent to 2 modulo 4.

Du [4] investigated cordial complete k-partite graphs. Kuo et al. [13] determined all m and n for which $\mathrm{mK}_{\mathrm{n}}$ is cordial. Lee et al. [14] exhibited some cordial graphs. Generalised Peterson graphs that are cordial are characterised in [7]. Ho et.al [6] investigated the construction of cordial graphs using Cartesian products and composition of graphs. Shee and Ho [7] determined the cordiality of $\mathrm{C}_{\mathrm{m}}{ }^{(\mathrm{n})}$; the one-point union of n copies of $\mathrm{C}_{\mathrm{m}}$. Several constructions of cordial graphs were proposed in [10-12, 15-19]. Other results and open problems concerning cordial graph are seen in $[2,5]$. Other types of cordial graphs were considered in $[3,4,8,21]$. Vaidya et.al [22] has also discussed the cordiality of various graphs.

## Definition 1.1 [24]

Let $f$ be a binary edge labeling of graph $G=\{V, E\}$ and the induced vertex labeling is given by $f(v)=\sum_{\forall u} f(u, v)(\bmod 2)$ where $v \in V$ and $\{u, v\} \in E$. $f$ is called an E-cordial labeling of $G$ if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ and $\left|v_{f}(0)-v_{f}(1)\right| \leq 1$, where $e_{f}(0)$ and $e_{f}(1)$ denote the number of edges, and $v_{f}(0)$ and $v_{f}(1)$ denote the number of vertices with 0 's and 1 's respectively. The graph G is called $\mathbf{E - c o r d i a l}$ if it admits E-cordial labeling.

In 1997 Yilmaz and Cahit [24] have introduced E-cordial labeling as a weaker version of edge-graceful labeling. They proved that the trees with $n$ vertices, $K_{n}, C_{n}$ are E-cordial if and only if $n \not \equiv 2(\bmod 4)$ while $K_{m, n}$ admits E-cordial labeling if and only if $m+n \not \equiv 2(\bmod 4)$.

## Definition 1.2 [21]

A prime cordial labeling of a graph G with vertex set V is a bijection f from V to $\{1,2$, $3, \ldots,|\mathrm{~V}|\}$ where each edge uv is assigned the label 1 if $\operatorname{gcd}(f(u), f(\mathrm{v}))=1$ and 0 if $\operatorname{gcd}(\mathrm{f}(\mathrm{u})$, $f(v))>1$, such that the number of edges having label 0 and edges having label 1differ by at most 1.

Sundaram et.al. [20] introduced the notion of prime cordial labeling. They proved the following graphs are prime cordial: $C_{n}$ if and only if $n \geq 6 ; P_{n}$ if and only if $n \neq 3$ or $5 ; K_{1, n}(n$, odd); the graph obtained by subdividing each edge of $K_{1, n}$ if and only if $n \geq 3$; bi-stars; dragons; crowns; triangular snakes if and only if the snake has at least three triangles; ladders. J. Babujee and L.Shobana [23] proved the existence of prime cordial labeling for sun graph, kite graph and coconut tree and Y-tree, $\left\langle\mathrm{K}_{1, \mathrm{n}}: 2\right\rangle(\mathrm{n} \geq 1)$; Hoffman tree, and $\mathrm{K}_{2} \Theta \mathrm{C}_{\mathrm{n}}\left(\mathrm{C}_{\mathrm{n}}\right)$

In this paper, we prove that $\mathrm{B}_{\mathrm{m}, \mathrm{n}}, \mathrm{S}^{\prime}\left(\mathrm{B}_{\mathrm{n}, \mathrm{n}}\right), \mathrm{D}_{2}\left(\mathrm{~B}_{\mathrm{m}, \mathrm{n}}\right)$ are $I$-cordial; $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is $I$-cordial only if n is even ; $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is $I$-cordial only if m or n is even and $\mathrm{B}_{\mathrm{n}, \mathrm{n}}{ }^{2}$ is not $I$-cordial

Notation. 1.3
(i) $[-x . . x]=\{t / t$ is an integer and $|t| \leq x\}$
(ii) $[-\mathrm{x} . . \mathrm{x}]^{*}=[-\mathrm{x} . . \mathrm{x}]-\{0\}$

## 2. Main Results

## 3. Definition.2.1

Let $G=(V, E)$ be a simple connected graph with $p$ vertices. Let $f: V \rightarrow\left[-\frac{p}{2} \ldots \frac{p}{2}\right]^{*}$ or $\left[-\left\lfloor\frac{p}{2}\right\rfloor . .\left\lfloor\frac{p}{2}\right\rfloor\right]$ as $p$ is even or odd respectively be an injective mapping such that $f(u)+f(v) \neq 0$ and induces an edge labeling $f^{*}: E \rightarrow\{0,1\}$ such that $f^{*}(u v)=1$, if $f(u)+f(v)$
$>0$ and $\mathrm{f}(\mathrm{uv})=0$ otherwise. Let $\mathrm{e}_{\mathrm{f}}(\mathrm{i})=$ number of edges labeled with i , where $\mathrm{i}=0$ or 1 . f is said to be $\boldsymbol{I}$-cordial if $\left|\mathrm{e}_{\mathrm{f}}(0)-\mathrm{e}_{\mathrm{f}}(1)\right| \leq 1$. A graph G is called $I$-cordial if it admits a $\boldsymbol{I}$-cordial labeling.


## Fig 1. I-cordial Graph

Theorem 2.2[16] Let G be a $(\mathrm{p}, \mathrm{q})$ graph where p is even. Then G is $I$-cordial only if $\mathrm{d}(\mathrm{v})<\mathrm{p}-$ 1, for any vertex $v \in \mathrm{~V}(\mathrm{G})$.

Theorem 2.3[16] Let $G$ be a ( $p, q$ ) graph where $p$ is odd. If there exist two vertices $u$ and $v$ such that $\mathrm{d}(\mathrm{u})=\mathrm{p}-1=\mathrm{d}(\mathrm{v})$. Then G is not an $I$-cordial.

Theorem $2.4 \mathrm{~B}_{\mathrm{m}, \mathrm{n}}$ is I-cordial.

Proof. $\mathrm{B}_{\mathrm{m}, \mathrm{n}}$ has $(\mathrm{m}+\mathrm{n}+2)$ vertices and $(\mathrm{m}+\mathrm{n}+1)$ edges. Let u be the vertices of degree m and $v$ be the vertices of degree $n$, such that $u v$ is a common edge in $B_{m, n}$. Let $u_{1}, u_{2}, \ldots, u_{m}$ denote the vertices adjacent to $u$ and $v_{1}, v_{2}, \ldots, v_{n}$ denote the vertices adjacent to $u$ in $B_{m, n}$. Then $E\left(B_{m, n}\right)=\{u v\}$ U A U B , where $A=\left\{u_{i}\right\}_{i=1}^{m}$ and $B=\left\{u_{i}\right\}_{i=1}^{n}$.

## CASE1. Both $m$ and $n$ are even or $m$ and $n$ are odd.

Let $\mathrm{f}: \mathrm{V} \rightarrow\left[\frac{-(\mathrm{m}+\mathrm{n}+2)}{2} \ldots \frac{(\mathrm{~m}+\mathrm{n}+2)}{2}\right]^{*}$ be a mapping defined by $\mathrm{f}(\mathrm{u})=-1$ and $\mathrm{f}(\mathrm{v})=2, \mathrm{f}\left(\mathrm{u}_{1}\right)=-2$, $f\left(v_{1}\right)=1$. The other vertices $\left\{u_{2}, u_{3}, \ldots, u_{m}, v_{2}, \ldots, v_{n}\right\}$ can be arranged with the labels,
$\{-(\mathrm{n}+1), \ldots,-4,-3,3,4, \ldots,(\mathrm{n}+1)\}$ in such a way that the vertices are given positive and negative labels. Since, $f(u)=-1$ and $f\left(u_{1}\right)=-2$, the edge $\mathrm{f}^{*}\left(\mathrm{uu}_{1}\right)<0$. Similarly, $f(v)=2$ and $f^{*}(u v)=-1$, so that $f^{*}\left(\mathrm{Vv}_{1}\right)>0$ and $\mathrm{f}^{*}(\mathrm{uv})>0$. Therefore, $\mathrm{e}_{\mathrm{f}}(1)=\mathrm{e}_{\mathrm{f}}(0)+1$. Since, positive and negative integers are equally shared among the other vertices, the other edges equally shares positive and negative labels. That is, $e_{f}(0)=e_{f}(1)$. Hence, $\left|e_{f}(0)-e_{f}(1)\right|=1$.

## CASE 2. $m$ is odd and $n$ is even.

We define $\mathrm{f}: \mathrm{V} \rightarrow\left[-\left(\frac{\mathrm{m}+\mathrm{n}+2}{2}\right) \ldots\left(\frac{\mathrm{m}+\mathrm{n}+2}{2}\right)\right]$ as $\mathrm{f}(\mathrm{u})=-1, \mathrm{f}(\mathrm{v})=0$ and $\mathrm{f}\left(\mathrm{v}_{1}\right)=1$, so that $\mathrm{f}^{*}(\mathrm{uv})<0$ and $f^{*}\left({v v_{1}}^{\prime}\right)>0$. Therefore, $e_{f}(0)=e_{f}(1)$. The other vertices $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n}$ can be labeled by the integers $-2,-3, \ldots,--\left(\frac{m+n+2}{2}\right), 2,3, \ldots,\left(\frac{m+n+2}{2}\right)$ can be arranged such that the vertices receives positive and negative integers. Therefore, the edges equally shares positive and negative labels. That is, $e_{f}(0)=e_{f}(1)$. Hence, $\left|e_{f}(0)-e_{f}(1)\right|=0$. Both cases imply $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence, G is I-cordial.


Definition 2.5 For a graph G the splitting graph $S^{\prime}(G)$ of a graph G is obtained by adding a new vertex $v^{\prime}$ corresponding to each vertex $v$ of $G$ such that $N(v)=N\left(v^{\prime}\right)$.

Note. The graph $S^{\prime}\left(B_{n, n}\right)$ is obtained from $B_{n, n}$ by adding the vertices $u^{\prime}$, $v^{\prime}$, $u_{i}^{\prime}, v_{i}^{\prime}$ corresponding to $\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$ where $1 \leq \mathrm{i} \leq \mathrm{n}$. Then $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uv}, \mathrm{uv}^{\prime}, \mathrm{u}^{\prime} \mathrm{v}, \mathrm{uu}_{\mathrm{i}}{ }^{\prime}, \mathrm{uu}_{\mathrm{i}}, \mathrm{u}^{\prime} \mathrm{u}_{\mathrm{i}}, \mathrm{vu}_{\mathrm{i}}^{\prime}, \mathrm{vv}_{\mathrm{i}}, \mathrm{v}^{\prime} \mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$.

Theorem 2.6 $\mathrm{S}^{\prime}\left(\mathrm{B}_{\mathrm{n}, \mathrm{n}}\right)$ is an I-cordial graph.

Proof. Here $\mathrm{p}=4(\mathrm{n}+1)$ and $\mathrm{q}=3(2 \mathrm{n}+1)$. We define $\mathrm{f}: \mathrm{V} \rightarrow[-2(\mathrm{n}+1) \ldots 2(\mathrm{n}+1)]^{*}$ as, $\mathrm{f}(\mathrm{u})=2$;
$\mathrm{f}\left(\mathrm{u}_{1}{ }^{\prime}\right)=1 ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}{ }^{\prime}\right)=(\mathrm{i}+1), 2 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{n}+1+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}^{\prime}\right)=2(\mathrm{n}+1) ; \mathrm{f}(\mathrm{v})=-1$; $\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}{ }^{\prime}\right)=-(\mathrm{i}+1), 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=-(\mathrm{n}+1+\mathrm{i}), 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}^{\prime}\right)=-\mathrm{f}\left(\mathrm{u}^{\prime}\right)$.

Then $\mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}{ }^{\prime}\right)>0, \mathrm{f}^{*}\left(\mathrm{uu}_{\mathrm{i}}\right)>0, \mathrm{f}^{*}\left(\mathrm{u}^{\prime} \mathrm{u}_{\mathrm{i}}\right)>0$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}$ and $\mathrm{f}^{*}\left(\mathrm{vv}_{\mathrm{i}}{ }^{\prime}\right)<0, \mathrm{f}^{*}\left(\mathrm{vv}_{\mathrm{i}}\right)<0$, $f^{*}\left(v^{\prime} v_{i}\right)<0$ for all $i=1,2, \ldots$, n. Here $\left|e_{f}(0)-e_{f}(1)\right|=0$. Since, $f(u)=2$, $f(v)=-1$, $f\left(u^{\prime}\right)=2(n+1)$ and $f\left(v^{\prime}\right)=-2(n+1)$. We have $f^{*}(u v)>0, f^{*}\left(u v^{\prime}\right)<0$ and $f^{*}\left(v u^{\prime}\right)>0$. Hence $\left|e_{f}(0)-e_{f}(1)\right|=1$.

Thus $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$. Hence $S^{\prime}\left(B_{n, n}\right)$ is an $I$-cordial.


Fig. $3 \quad S^{\prime}\left(B_{5,5}\right)$ is I-cordial

Definition 2.7 The shadow graph $\mathrm{D}_{2}(\mathrm{G})$ of a connected graph $G$ is constructed by taking two copies of $G$ say $G^{\prime}$ and $G^{\prime \prime}$. Join each vertex $u^{\prime}$ in $G^{\prime}$ to the neighbors of the corresponding vertex v' in G".

Note. Consider two copies of $\mathrm{B}_{\mathrm{n}, \mathrm{n}}$. Let $\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\left\{\mathrm{u}^{\prime}, \mathrm{v}^{\prime}, \mathrm{u}_{\mathrm{i}}^{\prime}, \mathrm{v}_{\mathrm{i}}^{\prime} ; 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the corresponding vertex set of each copy of $B_{n, n}$. Let $G$ be the graph $D_{2}\left(B_{n, n}\right)$ and $E(G)=\left\{u v, u v^{\prime}, u^{\prime} v, u^{\prime} v^{\prime}, u u_{i}, u^{\prime} u_{i}, v v_{i}, v^{\prime} v_{i} ; 1 \leq i \leq n\right\}$ then $p=4(n+1)$ and $q=4(2 n+1)$.

Theorem 2.8 $D_{2}\left(B_{n, n}\right)$ is I-cordial.

Proof. We define vertex labeling $\mathrm{f}: \mathrm{V} \rightarrow[-2(\mathrm{n}+1) .2(\mathrm{n}+1)]^{*}$ as $\mathrm{f}(\mathrm{u})=1 ; \mathrm{f}\left(\mathrm{u}^{\prime}\right)=-1$;
$\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=-(\mathrm{i}+1), 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}^{\prime}\right)=\mathrm{f}\left(\mathrm{v}_{\mathrm{n}}\right)-\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}(\mathrm{v})=2(\mathrm{n}+1) ; \mathrm{f}\left(\mathrm{v}^{\prime}\right)=-2(\mathrm{n}+1) ;$
$\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=-(\mathrm{i}+1), 1 \leq \mathrm{i} \leq \mathrm{n} ; \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}^{\prime}\right)=\mathrm{f}\left(\mathrm{u}_{\mathrm{n}}\right)+\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{n}$.

Then $f^{*}\left(u_{i}\right)>0 ; f^{*}\left(u^{\prime} u_{i}^{\prime}\right)>0 ; f^{*}\left(u u^{\prime}\right)>0 ; f^{*}\left(u^{\prime} u_{i}\right)>0$ and $f^{*}\left(v v_{i}\right)<0 ; f^{*}\left(v^{\prime} v_{i}\right)<0$ for all $i=1,2$,
$\ldots, n$. Hence $\left|e_{f}(0)-e_{f}(1)\right|=0$. Also, $f^{*}(u v)>0, f^{*}\left(u^{\prime} v\right)>0, f^{*}\left(u v^{\prime}\right)<0$, $f^{*}\left(u^{\prime} v^{\prime}\right)<0$.
Hence $\left|e_{f}(0)-e_{f}(1)\right|=0$.Thus from all the cases, $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$.

Therefore, $\mathrm{D}_{2}\left(\mathrm{~B}_{\mathrm{n}, \mathrm{n}}\right)$ admits I-cordial.


Fig. $4 \mathrm{D}_{2}\left(\mathrm{~B}_{6,6}\right)$ is I-cordial

Theorem 2.9 $\mathrm{B}_{\mathrm{n}, \mathrm{n}}^{2}$ is not I-cordial graph.

Proof.Consider $\mathrm{B}_{\mathrm{n}, \mathrm{n}}$ with vertex set $\left\{\mathrm{u}, \mathrm{v}, \mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ where $\mathrm{u}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}}$ are pendant vertices. Let G be the graph $\mathrm{B}_{\mathrm{n}, \mathrm{n}}{ }^{2}$ and $\mathrm{E}(\mathrm{G})=\left\{\mathrm{uv}, \mathrm{vv}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}, \mathrm{uv}_{\mathrm{i}}, \mathrm{vu}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$, then $\mathrm{p}=2(\mathrm{n}+1)$ and $\mathrm{q}=4 \mathrm{n}+1$. Since the vertices u and v are adjacent to $\mathrm{u}_{\mathrm{i}}$ 's and $\mathrm{v}_{\mathrm{i}}$ 's for all $\mathrm{i}=1,2, \ldots, \mathrm{n}$. That is, $\mathrm{d}(\mathrm{u})=\mathrm{d}(\mathrm{v})=\mathrm{p}-1$. Then by Theorem 2.2.3, G is not I-cordial.

Theorem. 2.10 The complete bipartite graph $K_{n, n}, n \geq 2$ is I-cordial only if $n$ is even.

Proof. Let $\mathrm{G}=\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ be a complete bipartite graph with the partitions $\{\mathrm{U}, \mathrm{V}\}$ where $\mathrm{U}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$ and $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}\right\}$. Then $\mathrm{p}=2 \mathrm{n}$ and $\mathrm{q}=\mathrm{n}^{2}$. We define $\mathrm{f}: \mathrm{V} \rightarrow[-\mathrm{n} . \mathrm{n}]^{*}$ as follows:

$$
\begin{gathered}
\mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
-\left(\frac{\mathrm{i}+1}{2}\right) \text { if } \mathrm{i} \text { is odd } ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\frac{\mathrm{i}}{2} \text { if } \mathrm{i} \text { is even } ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right. \\
\mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{r}
-\left(\frac{\mathrm{n}+\mathrm{i}+1}{2}\right) \text { if } \mathrm{i} \text { is odd } ; 1 \leq \mathrm{i} \leq \mathrm{n} \\
\left(\frac{\mathrm{n}+\mathrm{i}}{2}\right) \text { if } \mathrm{i} \text { is even } ; 1 \leq \mathrm{i} \leq \mathrm{n}
\end{array}\right.
\end{gathered}
$$

Then $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{i}}\right)>0$ for all $\mathrm{i}=1,3,5, \ldots, \mathrm{n}-1$ and $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{i}}\right)<0$ for all $\mathrm{i}=2,4,6, \ldots, n$. Hence $\mathrm{n} / 2$ edges with positive labels are incident with $\mathrm{u}_{1}$. Similarly, $\mathrm{n} / 2$ edges with negative labels are incident with $u_{1}$. Similar argument holds for all $n$ edges. That is $e_{f}(0)=e_{f}(1)=n^{2} / 2$. Hence $\left|e_{f}(0)-e_{f}(0)\right|=0$. Thus G is I-cordial when n is even.


Fig. $5 \mathrm{~K}_{6,6}$ is I-cordial

Conversly, when n is odd, the labels cannot be shared between the two partite sets in such a way that same labels of different parity lies in different partite sets. Hence $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ is not an I-cordial graph when n is odd.

Theorem 2.11 The bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is I-cordial if and only if both m and n are not odd.

Proof. Consider a bipartite graph $K_{m, n}$ with $\{U, V\}$ vertices where $U=\left\{u_{1}, u_{2}, u_{3} \ldots u_{m}\right\}$ and $\mathrm{V}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$. Then $\mathrm{p}=\mathrm{m}+\mathrm{n}$ and $\mathrm{q}=\mathrm{mn}$.

## CASE 1.m is even and $\mathbf{n}$ is odd.

We define $\mathrm{f}: \mathrm{V} \rightarrow\left[-\left(\frac{\mathrm{m}+\mathrm{n}-1}{2}\right) . .\left(\frac{\mathrm{m}+\mathrm{n}-1}{2}\right)\right]$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}\frac{i+1}{2} & \text { if } i \text { is odd } ; 1 \leq i \leq m \\
-\frac{i}{2} & \text { if } i \text { is even } ; 1 \leq i \leq m\end{cases} \\
& f\left(v_{i}\right)= \begin{cases}\frac{m+i+1}{2} & \text { if } i \text { is odd } ; 1 \leq i \leq n \\
-\frac{m+i}{2} & \text { if } i \text { is even } ; \\
1 \leq i \leq n\end{cases} \\
& f\left(v_{n}\right)=0
\end{aligned}
$$

Then $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{i}}\right)>0$ for all $\mathrm{i}=1,3,5, \ldots, \mathrm{n}$ and $\mathrm{f}^{*}\left(\mathrm{u}_{1} \mathrm{v}_{\mathrm{i}}\right)<0$ for all $\mathrm{i}=2,4,6, \ldots, \mathrm{n}-1$.

Similar argument holds for all $m$ and $n$ vertices in $K_{m, n}$. Thus, $\frac{\mathrm{q}}{2}$ edges equally shares label 0 and 1. That is, $e_{f}(0)=e_{f}(1)=\frac{q}{2}$. Hence $\left|e_{f}(0)-e_{f}(1)\right|=0$.

## CASE 2.m and $n$ are even.

We define $\mathrm{f}: \mathrm{V} \rightarrow\left[-\left(\frac{\mathrm{m}+\mathrm{n}}{2}\right) . .\left(\frac{\mathrm{m}+\mathrm{n}}{2}\right)\right]^{*}$, the labeling as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=\left\{\begin{array}{cc}
\frac{i+1}{2} & \text { if } i \text { is odd } ; 1 \leq i \leq m \\
-\frac{i}{2} & \text { if } i \text { is even } ; 1 \leq i \leq m
\end{array}\right. \\
& f\left(v_{i}\right)= \begin{cases}\frac{m+i+1}{2} & \text { if i is odd; } \\
1 \leq i \leq n \\
-\frac{m+i}{2} & \text { if i is even } ; \\
1 \leq i \leq n\end{cases}
\end{aligned}
$$

As in Case $1, \frac{\mathrm{q}}{2}$ edges equally share label 0 and 1 . That is, $\mathrm{e}_{\mathrm{f}}(0)=\mathrm{e}_{\mathrm{f}}(1)=\frac{\mathrm{q}}{2}$.

Hence $\left|e_{f}(0)-e_{f}(1)\right|=0$.

Conversly, suppose both $m$ and $n$ are odd. Then $m+n$ is even, say $2 k$. The labels cannot be shared between the two partite set in such a way that same label of different parity lies in different partite sets. Therefore $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$ is not I -cordial if m and n are odd.


Fig. $6 \mathrm{~K}_{4,6}$ is I-cordial.

## References:

[1] I.Cahit, Cordial graphs, A weaker version of graceful and harmonious graphs, ArsCombinatoria, 23,1987, pp 201-208.
[2] I.Cahit, Recent results and Open Problems on Cordial graphs, contemporary methods in Graph Theory, R.Bodendrek.(Ed.) Wissenschaftsverlog, Mannheim,1990, pp. 209-230.
[3] I. Cahit, H-Cordial Graphs, Bull.Inst.Combin.Appl; 18 (1996) 87-101.
[4] G.M. Du. Cordiality of complete k- partite graphs and some special Graphs, NeimengguShida. XuebaoZiranKexueHauwen Ban 2 (1997) 9-12.
[5] J.A.Gallian, A dynamic survey of graph labeling, Electron.J.Combin. 5 (2000) 1-79.
[6] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of the Cartesian product and composition of graphs, Ars Combin. 29 (1990) 169-180.
[7] Y.S. Ho, S.M. Lee, S.S. Shee, Cordial labeling of unicyclic graphs and generalized Peterson graphs, Congr. Numer 68(1989) 109-122.
[8] M.Hovey, A-Cordial Graphs, Discrete Math. 1991 (3), pp 183-194.
[9] F.Harary, Graph Theory, Addison- Wesly, Reading Mass 1972.
[10] W.W.Kirchherr, NEPS Operations on Cordial graphs, Discrete Math.115(1993) 201-209.
[11] W.W.Kirchherr, On the cordiality of certain specific graphs, ArsCombin. 31 (1991) $127-138$.
[12]W.W.Kirchherr,Algebraic approaches to cordial labeling, Graph Theory, CombinatoricsAlgorithms and applications, Y. Alavi,et.al(Eds.)SIAM, Philadelphia, PA, 1991, pp 294-299.
[13] S.Kuo, G.J. Chang, Y.H.H. Kwong, Cordial labeling of $m K_{n}$ Discrete math. 169 (1997) 1-3.
[14] Y.H.Lee , H.M. Lee, G.J.Chang, Cordial labeling of graphs, Chinese J.Math20(1992) 263-273.
[15] S.M.Lee, A.Liu, A construction of cordial graphs from smaller cordial graphs, ArsCombin. 32 (1991) 209-214.
[16] T.Nicholas and P.Maya, Some results on I-cordial graph, communicated.
[17] E. Seah, On the construction of cordial graphs from smaller cordial graphs, ArsCombin. 31 (1991) 249 - 254.
[18] S.C.Shee,The cordiality of the path - union of $n$ copies of a graph, Discrete Math., 151 (1996) 221-229.
[19] S.C.Shee, Y.S.Ho, The Cardiality of the one-point union of n-copies of a graph, Discrete Math. 117 (1993) 225-243.
[20] M.Sundaram, R.Ponrajan, S.Somusundaram, Prime Cordial labelling of graphs, Journal of Indian Academy Of Mathematics, 27(2005) 373 - 393
[21] A.Unveren and I.Cahit, M-Cordial Graphs, Pre-print
[22] S.K.Vaidya, N.A. Dani, K.K.Kanani, P.L.Vihol, Cordial and 3- Equitable labeling forsome star related graphs, International Mathematical Forum, 4, 2009,no.31, 1543-1553.
[23] J B Babujee and L Shobana, Prime and Prime cordial labeling for special graphs, Int. J. Contemp. Math Sciences 5, (2010), 2347 - 2356.
[24] R.Yilmaz and I.Cahit, "E-Cordial graphs", ArsCombin.,Vol 46, pp.251-266, 1997.

