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Abstract. The Gaussian elimination method is usually used for solving
problems related to linear programming. The paper describes an approx-
imate method which solves a non-negative least-squares (NNLS) problem.
The presented method is especially suitable for degenerate and unstable prob-
lems and also when a feasible initial solution is not known. The main ideas
are explained by simple examples.
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1 Introduction
During the last 70 years, the simplex method, which is based on Gaussian
elimination, has been used the most in solving linear programming (LP) and
related problems. In some settings, however, it has performed poorly - and
30 years ago a foray of research in this area commenced. For degenerate and
unstable problems the least-squares method is recommended. This highly
developed method is much older than the simplex method, it is used not
only in mathematics but also in statistics, physics, etc. Mainly nonlinear

1E-mail:Evald.Ubi@ttu.ee
2E-mail:jaanbi.blogspot.com

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-3 | Issue-4 | April,2017 | Paper-2 13            



problems are solved by composing a certain number of similar linear least-
squares problems, differing in a variable or constraint. In this paper it will
be proved that such an idea can be used also for solving mathematical pro-
gramming problems. First of all, the least-squares method is recommended
for degenerate and unstable problems.

The basic problem used in this paper is the NNLS problem (non-negative
least-squares), minimizing ‖Ex−b‖2 s.t.x ≥ 0, see Section 2. This problem is
equivalent to phase I algorithm for the simplex method discussed by Leichner,
Dantzig and Davis (1993), see /1/. Their algorithm solves least-squares sub-
problems and guarantees strict improvement on degenerate problems at each
step. A similar algorithm based on the least-squares method was described
by Übi (2007,2010).

The least-squares method is described thoroughly in books by Björck
(1996) and Lawson and Hanson (1995).

The main goal of this article is to show how the least-squares method can
be used for solving degenerate and unstable linear programming problems.

2 Algorithm LS1 for the non-negative least squares
(NNLS) problem

Let us have a non-negative least-squares (NNLS) problem, an overdetermined
or underdetermined system of linear equations

Ex = b, x ≥ 0, (1)

or

min{ϕ(x) = 0.5 ‖ Ex− b ‖2}, x ≥ 0,

where E is an m×n matrix, x ∈ Rn, b ∈ Rm, see Björck (1996), Lawson and
Hanson (1995). In these books the main attention is paid to overdetermined
systems, but in the mathematical programming m < n.

Assumption 2.1.The columns of the matrix E and vector b are unit
vectors,

‖Ej‖ = 1, j = 1, ..., n,

‖b‖ = 1.

Our method for the problem (1) is described in paper Übi (2007, 2010).
It corresponds to the first version of the second method, see Lawson-Hanson
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(1995), ch 24. For the matrix E the QR transformation is computed, where
Q is an orthogonal and R an upper triangular auxiliary matrix. The matrix
E is not transformed. The order of matrix R is one at the first iteration, two
at the second iteration etc. Choose the starting point x0 = 0, the working
set of columns is empty. At each step one variable xj0 is activated (for which
column Ej0 forms a minimal angle to the residual ρ = b− ExE and column
Ej0 is added to the triangular matrix R) or one variable xj ≤ 0 (and its
corresponding column in R) is removed. In the last case all the columns of
R corresponding to this and following variables are replaced by the originals
from the system (1). Then these Householder’s transformations which were
performed before the variable xj(xj ≤ 0) are applied to the replaced columns
of R. At last the replaced part is transformed into triangular form keep-
ing the reflection normals in the subdiagonal part of R. The Householder’s
transformations are memorized as products.

During the actual solution process the inequality xj > 0 holds almost al-
ways. All variables xj have been positive even in the case of having m = 100
constraints, when the elements of A, b and c were randomly generated. The
use of algorithm LS1 for solving medium-sized problems has been docu-
mented by Übi /2007/, /2010/.

3 Solving linear programming problems
We consider the linear programming problem

z = (c, x)→ max (2)

Ax = b

x ≥ 0

and its dual

w = (y, b)→ min

yA ≥ c, (3)

where A is m× n matrix, b and y are m−vectors, x and c are n−vectors.
Often problem (2) does not have the feasible initial solution that is a

prerequisite for using the simplex method and thus we minimize the sum
of artificial variables during phase-I. The minimization of this sum has two
setbacks - it is often the most computationally intensive part of the job and
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also the initial solution found does not depend on the objective function. On
the other hand finding the initial solution is an NNLS problem. The goal of
this paper is to find optimal solution x∗ to the problem (2) by using only
one NNLS problem.

If vector x̂ is a feasible basic solution to the problem (2) and ẑ = (c, x̂)
the corresponding value of objective function, then we set û = x̂/ẑ, t̂ = 1/ẑ.
We obtain a vector û and a scalar t̂, a feasible solutions to the LP problem

z1 = t→ min

(c, u) = 1, Au− tb = 0, (4)

u, t ≥ 0.

Assumption 3.1. The right hand sides are non-negative, bi ≥ 0(i =
1, ...,m) and the maximum of the objective function satisfies the inequality
zmax > 1.

In the case the assumption is not satisfied, we add any of the constraints to
the objective function whilst possibly multiplying it with a positive number,
see Remark 3.1. In the remark 3.5 we will further consider the case when the
right hand side b = 0.

Thus in the case the assumption 3.1 is satisfied we may solve problem(4)
instead of the initial problem (2). We will compose a following NNLS problem
for finding an approximate solution to the problem (4)

(c, u) = 1, Au− tb = 0, (5)

εt = 0,

u, t ≥ 0,

where ε > 0 is a miniscule weighting coefficient.
If in the optimal solution to the problem (5) the optimal value of the

variable t is strictly positive, t∗ > 0 and vector u∗/t∗ satisfies the constraints
of the initial problem with a certain accuracy (the accuracy depends on the
chosen coefficient ε) then we have obtained an approximate value of the
optimal solution to the initial problem.

We will next consider the case when the minimum t∗ = 0.
Theorem of alternative 3.1. (Gale,1969) The system Dx ≤ f has

no solution if and only if there is a vector y such that

(y, f) = −1, yD = 0, y ≥ 0. (6)

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-3 | Issue-4 | April,2017 | Paper-2 16            



If the objective function of the initial problem is unbounded, then accord-
ing to the theorem of duality the system −yA ≤ −c does not hold and due to
the Gale’s theorem there exists a nonnegative vector v, such that Av = 0 and
(c, v) = 1. In this case the minimum t∗ = 0 and the least-squares problem
(5) has such a solution, which satisfies all equations exactly, see Example 3.5.

Let us solve the problem (5). If the optimal value t∗ = 0, then the ob-
jective function of the initial problem (2) is unbounded or the problem is
contradictory. If t∗ > 0 and vector u ∗ /t∗ does not satisfy the constraints of
the initial problem within the chosen accuracy, then the problem is contra-
dictory.

Remark 3.1. We have assumed that zmax > 1 while using the method
described above. In a real-life problem is it usually possible to determine,
whether the maximum of the objective function is positive or negative. As
state above, we will add some constraints to the objective function, in case
the maximum is negative. It may also be necessary to do the opposite,
subtract some constraints from the objective function, in case the values of
the objective function are too big, as in the problem (5) tmin = 1/zmax. It is
possible to avoid excessively small values of t this way. We may also change
the norm of the objective vector c.

Remark 3.2. The NNLS problem (5) my be solved using Matlab’s built-
in NNLS solver. In this paper the algorithm LS1 that is described in section
2, is deployed.

Remark 3.3. It is possible to prove that for ε → 0 the least-squares
solution to the problem (5) converges to the optimal solution to the initial
problem (2). The choice of the weighting coefficient ε did not pose a problem
in the examples undertaken. The constraint εt = 0 enables one to stabilize
the solution procedure. This is an important difference when compared with
the big M method in linear programming, where the choice of the penalty
coefficient M is complicated.

Remark 3.4. The bigM method, which is based on the use of a penalty
function, is deployed in linear programming. We will hereby name the
method proposed the "little ε” " method. This method is especially suit-
able for solving problems with degenerate basis (see Examples 3.1, 3.2) and
also when a feasible initial solution is not known. While solving practically
viable problems, it has become clear that finding the initial solution is most
computationally intensive task.

Example 3.1.

z = x1 + x2 + x3 + x4 → max
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(1 + d)x1 + x2 + x3 + x4 ≤ 4 + d

x1 + x3 + x4 ≤ 3

x1 + x4 ≤ 2

x ≥ 0.

The maximum value of the objective function is zmax = 4 + d, if d > 0.
This is obtained in the case of one basis variable x2 = 4 + d as well as for
basis consisting x2, x3 or x2, x4 or x2, x3, x4. Additionally, if x3+x4 = 2 ,then
the objective function will achieve the maximum for x2 = 2 + d.

We solved the problem for d = 0, 00001 by transforming constraints to
equalities by using slack variables . We varied the regularization parameter
ε, 0 ≤ ε ≤ 1. The variables were activated in the order u2, t, u6, u7. The last
two correspond to slack variables. When we solved problem (5) for ε = 0
(without the constraint εt = 0), x2∗ = 4, 00001 was obtained. When we set
ε = 0, 01, we obtained x2∗ = 4, 00003. Even for a comparatively big ε = 1
we obtained x2∗ = 4, 2500. The optimal values of variable change little when
0 ≤ ε ≤ 0, 001.

Example 3.2.

z = 0, 75x1 − 150x2 + 0, 02x3 − 6x4 → max

0, 25x1 − 60x2 − 0, 04x3 + 9x4 ≤ 0

0, 5x1 − 90x2 − 0, 02x3 + 3x4 ≤ 0

x3 ≤ 1

x ≥ 0.

While solving this problem with the simplex method, an infinitive cy-
cle may accur, see/7/, x∗ = (0, 04; 0; 1; 0)T , zmax = 0, 05. Variables were
activated in sequence u1, u3, t, u5, while solving problem (5). If parame-
ter ε = 0, then optimal solution had accuracy of 10−14. For ε = 0, 01
x∗ = (0, 046; 0; 1, 0001; 0)T .

Remark 3.5. Let us take a look at a problem, where all right hand sides
are zero. We formulate problem (5).

(c, u) = 1, Au = 0, (7)

u ≥ 0.

If this problem has a solution, which satisfies all equations, then by mul-
tiplying this solution with any positive number, we see that the objective
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function is unbounded. In the other case, the system (7) does not have an
exact solution, zmax = 0, x∗ = 0.

Example 3.3.

z = 2x1 + 3x2 − x3 − 12x4 → max

−2x1 − 9x2 + x3 + 9x4 + x5 = 0

1/3x1 + x2 − 1/3x3 − 2x4 + x6 = 0

x ≥ 0.

This is a total cycle problem of A.Tucker, see /6/. The corresponding
problem (5) has a solution, which exactly satisfies all constraints for each
ε, 0 ≤ ε ≤ 1 u∗ = (1, 0, 1, 0, 1, 0, 0)T , t∗ = 0. Thus the objective function
of initial problem is unbounded for c1 > 1. For example, if c1 = 0, 5, then
constraints of dual problem are satisfied, zmax = wmin = 0, x∗ = 0. The dual
problem has a single feasible solution y = (0, 3) if c1 ≤ 1, in the other case
the dual problem is contradictory.

Example 3.4. In paper /9/ a curve fitting problem is solved. A set on
corresponding values (xi, yi) are collected, i = 1, ..., 19. Fit the "best" straight
line y = bx+a to this set of data points. The objective is to minimize the sum
of absolute deviations of each observed value of y from the value predicted
by the linear relationship.

z =
∑

ui +
∑

vi → min

bxi + a+ ui − vi = yi

u ≥ 0, v ≥ 0, i = 1, ..., 19.

The solution to this problem is line y = 0, 6375x + 0, 5812. We changed
the sign of the objective function and added all constraints to it. We solved
the problem for a number of ε, 0, 001 ≤ ε ≤ 1.. The most inexact solution
was obtained for ε = 1 , y = 0, 6386x + 0, 5864. But the number of steps
undertaken decreased for growing ε values.

Finally we put forth the formal description of the small ε method.
1. If rhs b = 0, then
... solve NNLS problem (5)
..... If r2 = min[(1− (c, u))2+ ‖ Au ‖2, u ≥ 0] = 0 then
..... stop, the objective function z is unbounded
..... else zmax = 0, x∗ = 0.
end If

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-3 | Issue-4 | April,2017 | Paper-2 19            



2. Let us transform the objective function so that zmax > 1 (see Remark
3.1)

3. Solve NNLS problem (5)
4. If t∗ > 0 and x∗ = u ∗ /t∗ satisfies Ax∗ = b then
...x∗ is an approximate solution to the problem (2), stop
...else the problem (2) has any feasible solution, stop
5. If t∗ = 0 and R2 = min[‖ Au− b ‖2, u ≥ 0] > 0 then
... the problem (2) has any feasible solution, stop
6. The objective function z is unbounded.
7. The problem (2) is solved.
Example 3.5.

z = 2x1 − x2 → max

x1 − x2 + x3 = 1

x1 − x2 − x4 = 2

x ≥ 0.

The initial as well as the dual problems are contradictory. The least-
squares solution to the problem (5) is u∗ = (1, 1, 0, 0)T , t∗ = 0 , which infers
that the dual problem is contradictory. In such a case the theorem of duality
implies that the initial problem is contradictory or the objective function is
unbounded. If we solve only the right hand side of the second constraint
by taking b2 = 0, then the constraints are no longer contradictory and the
objective function is unbounded, see steps 5, 6.

4 Conclusion and future work
In this paper an algorithm based on non-negative least-squares method is
proposed. That algorithm is primarily suitable for degenerate problems, as
well as for linear programming problems for which the initial solution is not
known. The NNLS problem my be solved also using Matlab’s built-in solver.
In the future the QR− decomposition will have to be used for solving sparse
linear programming problems, see Björck /2/.
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