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Abstract
In this paper Prior specification on Bayesian inference when fitting a Dirichlet process mixture
model with a lognormal kernel (DPLNMM) in the presence of censoring is considered. We
study the effects of prior choices on posterior inference by varying prior dispersion. Simulation
and an application to leukemia data study was carried out with different priors. The Bayesian
approach via the Gibbs Sampler Markov Chain Monte Carlo algorithm designed to fit the model
was used in analysis. We also show that the DPLNM model is relatively robust to the form of
prior used from the MCMC output.
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1. Introduction
Bayesian framework has been considered as attractive methods in survival modelling (Hjort,
2003 and Muller & Quintana, 2004). The approach considers unknown parameters as random
variables that are characterized by a prior distribution. This prior distribution is placed on the
class of all distribution functions, and then combined with the traditional likelihood, along with
a given set of survival data to obtain the posterior distribution of the parameter of interest on
which the statistical inference is based (Singpurwalla, 2006. The prior information could come
from past data or from previous comparable experiments (Gelman et al., 2004). Then, by using
appropriate MCMC sampling technique, random samples from the posterior distribution can be
generated and with these samples, inferences on model parameters and their functions made.

For Dirichlet process mixture models, Doss and Huffer, 2003 suggest using Markov chain
Monte Carlo (MCMC) simulation techniques to approximate the posterior distribution. In par-
ticular, an MCMC method called Gibbs sampling is used to generate random samples from
the complex posterior distribution through direct successive simulations from the component
conditional distributions.

The Bayesian methods have thus gained popularity because of the incorporation of external
information about the parameters of interest into the inference process, thus greatly improving
inference. Further, the use of Bayesian methods is easily extended to more complex models,
allowing one to not only express uncertainty in the many parameters involved, but also rela-
tionship between them. Bayesian data analysis is also valuable in survival analysis in cases of
censoring, where one usually obtains limited information directly from the data, and in cases
where the observed data consist of several groups, where each group has different properties
and characteristics of the one family but uses the same distribution (Singpurwalla, 2006).

One important issue in Bayesian estimation when fitting mixture models is prior specification.
In this paper, we provide a simple recommendation for the choice of these priors through prior
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sensitivity. A prior distribution of a parameter is the probability distribution that represents the
parameter’s uncertainty before data are observed, and therefore priors are subjective. Within
the Bayesian paradigm, objective results are obtained by using prior distributions that have
a minimal impact on the posterior distribution. Additionally, Congdon, 2010 argue that in the
Bayesian approach hierarchical models can be introduced in the analysis adding more flexibility
in the model and some improvements in the analysis. Hierarchical models are those in which
one or more parameters of the model are in turn dependent on a series of other parameters
(called hyper-parameters) based on certain probability density functions (hyper-priors). In this
case, hyper-parameters follow a particular prior distribution too. So that different levels of
hierarchy can be set up in the analysis. A variety of different prior distributions have been
proposed in literature to model the survival quantities. A good overview of prior distributions
can be found in Ferguson, 1973; Doksum, 1974; Mazzuchi & Singpurwalla, 1985; Hjort, 1990
and Arjas & Gasbarra, 1994.

As long as we maintain positivity, continuity, and consistency, there are essentially three alter-
native approaches to specifying a prior. The first is to fully specify a subjective prior, the second
is to choose a convenient family of conditionally conjugate priors, and the third is to use some
default objective prior.

The first technique is considered ideal. Though these priors often present computing challenges,
are difficult to elicit, and are elicited for each model, the method provides a full probability anal-
ysis which represents the researcher’s beliefs. The second method offers a good approximation
to a full probability analysis while presenting fewer challenges in computation and elicitation.
Finally, the third option is advantageous when there are many models to consider or there is
only weak prior knowledge. In these situations, since the full probability model is not speci-
fied one may define priors that correspond to integrable (proper) posteriors for some minimal
sample size. Despite these shortcomings, Berger, 2006 suggest that these priors often provide
unbiased posterior distributions, and are preferred because they have weak prior knowledge.

A well accepted criterion for the choice of a DPM model prior is that the prior has a large or full
topological support. Intuitively, such a prior can reach every corner of the parameter space and
thus can be expected to have consistent posterior. More flexible models have higher complexity
and hence the process of prior elicitation becomes more complex.

Priors are usually constructed from the consideration of mathematical tractability, feasibility of
computation, and good large sample behavior. The form of the prior is chosen according to
some default mechanism while the key hyper-parameters are chosen to reflect any prior beliefs.
Raiffa & Schlaifer, 1961 summarize these characteristics as follows

1. The class should be analytically tractable. Therefore, the posterior distribution should be
easily computed, either analytically or through simulation.

2. The class should be rich, in the sense of having a large enough support.

3. The hyperparameters defining the prior should be easily interpreted.

Although it is not always possible to completely satisfy all of these requirements, in this paper,
we emphasizes the importance of these features when constructing priors on spaces of distribu-
tions.
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The objective of this paper is to study the influence of prior specifications for ν, in hierarchical
finite DPLNM models considering Gamma priors with varying dispersion on the estimation of
the model parameters and credible intervals of estimates. This aim is addressed through the es-
timation of a two component lognormal mixture model in a simulation study and an application
to a leukemia dataset.

The rest of this paper is organized as follows. Section 2 motivates the modelling approach and
presents the mixture of lognormal model. Section 3 considers a strategy for posterior infer-
ence using a Gibbs sampling MCMC algorithm through WinBUGS software and discuss prior
specification. In Section 4, we demonstrate the performance of the model, using simulated data
generated from a mixture of two lognormal distributions and real dataset. Finally, in Section 5
we summarize our results and outline areas of future research.

2. The Dirichlet Process Lognormal Mixture Model
In this section, we define the lognormal mixture model for analyzing survival data in the pres-
ence of censoring. We also discuss Gibbs Sampling MCMC algorithm through the WinBUGS
(WinBUGS, 2001)software.

Let T be a non negative random variable representing patient’s survival time and t be a real-
ization of the random variable T . Assume that we observe survival time t on patients possibly
from a heterogeneous population. The two parameter lognormal density function for survival
time is given by

f (t | µ, s2) =
1
√

2πst
exp

{
−

(log(t) − µ)2

2s2

}
, t > 0 (1)

where µ > 0 a scale parameter which equals the logarithm of the median time to failure and
s2 > 0 is a shape parameter (Ibrahim et al., 2001b).

A mixture of K lognormal densities (Marin et al., 2005a) is then defined by

f (t | K, ω, µ, s2) =

K∑
j=1

ω j f (t | µ j, s2
j), i = 1, · · · , n (2)

where ω j are mixing weights satisfying, ω j > 0 with
∑K

j ω j = 1 and f (t|µ j, s2
j), j = 1, · · · ,K is a

kernel density of the lognormal distribution. Mixing on both the shape and scale parameters of
the lognormal kernel results in a flexible mixture that can model a wide range of distributional
shapes.

For the DPLN mixture model (2) the number of components K is known while µ, s2 and ω are
subject to inference. Thus if we let

xi j =

{
1 if ith unit is drawn from the jth mixture component,
0 elsewhere. (3)

then ω j = p(xi j = 1).

For a mixture model with K components, the likelihood of a single ti is given by
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f (ti | ω, θ) =

K∑
j=1

ω j f (ti | θ j), i = 1, · · · , n (4)

and for a vector of observations t = (t1, . . . , tn),

f (ti | ω, θ) =

n∏
i=1

K∑
j=1

ω j f (ti | θ j), i = 1, · · · , n (5)

Thus the joint Likelihood becomes

f (t | x, µ, s2, ω) =

n∏
i=1

K∑
j=1

[
ω j(xi j) f (ti | µ j, s2

j)
]xi j

(6)

We place the following prior distributions on the parameters to give the DPLNM model hierar-
chically as

t j | µ j, s2
j ∼ f (t | µ j, s2

j)

(µ, s2) | G ∼ G

G | ν, β, θ, σ2 ∼ DP(νG0)

ν ∼ Gamma(αν, βν)

G0 ∼ Inverse-Gamma(s2 | α, β) · Normal(µ | θ, σ2)

θ ∼ Normal(µθ, σ2
θ)

σ2 ∼ Inverse-Gamma(ασ, βσ)

β ∼ Gamma(αβ, ββ)

(7)

where G0 is a parametric distribution function, the center or base distribution of the process, ν
is a positive scalar precision parameter and G ∼ DP(νG0) denotes that a DP prior is placed on
the distribution function G.

The parameter ν of the DP prior DP(νG0) controls how close a realization of the process is to
the base distribution G0. The larger the value of ν the closer a realization of the process is to G0

(Ferguson, 1973). In the DP mixture model (7), ν controls the number of distinct components
of the mixture (Antoniak, 1974, and Escobar & West, 1995) and therefore, prior information
about the number of components can be incorporated through the prior for ν. Since we do not
have strong prior information in this direction, we choose values roughly equal to the sample
median and interquartile range as prior guesses for the population median and interquartile
range, respectively. That is, we choose αν and βν yielding Gamma priors for ν that place mass
both on small and large values.

As suggested in Kottas, 2006 there is posterior learning for ν when sample sizes are moderate
to large (e.g., n > 50), while with small sample sizes, it appears to be difficult for the data to
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inform about ν. The base distribution G0 of a DP mixture model can be considered as our prior
guess on µ and s2 (Antoniak, 1974).

Therefore, a convenient choice of G0 for the DPLNM model would be

G0(µ, s2 | θ, σ2, β) = Normal(µ | β, σ2) · inverse-Gamma(s2 | α, β) (8)

where the inverse-Gamma distribution has the probability density function is

f (s2 | α, β) =
βα

Γ(α)

(
s2
)−(α+1)

exp
(
−
β

s2

)
(9)

so that prior to posterior analysis is efficient, the model is flexible and prior information can be
incorporated through its parameters. This enables the Gibbs sampler (West et al., 1994, Bush &
MacEachern, 1996) to efficiently and easier implemented to fit the model.

The joint prior can then be expressed as

f (µ, s2, ω | θ, σ2, α, β, ν) = f (ω | ν) f (µ | s2, σ2) f (s2 | α, β) (10)

For each observation ti, we define an indicator variable as

δi =

{
0 if ti is an uncensored failure time,
1 if ti is a censoring (right) time. (11)

Then for a rightly censored observation ti, i = 1, and the full conditional posterior distribution
of the model is given as

f (µ, s2, ω | t, x, θ, σ2, α, β, ν) =
Γ(ν1+···+νk)
Γ(ν1···Γ(νk) ω

ν1−1 · · ·ωνk−1
(

1
(2πσ2

) k
2
(
βα

Γ(α)

)k[ k∏
j=1

(sk
j)
−(α+1)

]
×

exp
{
− β

k∑
j=1

1
s2

j

}
exp

{
− 1

2σ2

k∑
j=1

(µ j − θ)2
}

√ n

2π

(
n∑

i=1

(
log ti

)2
−

( n∑
i=1

log ti

)
n

) n−3
2

2
n−3

2 Γ
(

n−3
2

)(
s2
) n

2

×

(s2
j)
−(α+n j/2+1) exp

−β+0.5
∑
i, j

(log(ti)−µ j)
2

s2

∏
i, j

[
1 − 1

√
2πσ2

exp
{
− 1

2σ2 (µ j − θ)2
}( log(ti)−µ j

s j

)]
(12)

where n j is the number of uncensored failure times in the jth cluster.

3. Posterior Inference
To apply model (7), we choose values for the parameters of the priors for ν, β, θ and σ2.
Choosing the base distribution given by (8) offers both the computational convenience of using
Gibbs Sampling and the flexibility of incorporating prior information. This is achieved if we
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assume θ and σ2 to be random and set α = 2 yielding an inverse Gamma distribution with
infinite variance, with all the parameters of the priors for ν, β, θ and σ2 fixed. Flexibility
is added by taking β random. We specify prior distributions for the hyper-parameters θ, σ2,
and β, especially, we assume Normal(µθ, σ2

θ), inverse-Gamma(ασ, βσ) and Gamma(αβ, ββ) prior
distributions to θ, σ2, and β, respectively. Finally, we place a Gamma prior on ν which also
facilitates the implementation of the Gibbs sampler (Escobar & West, 1995).

We run WinBUGS using a missing data approach through the I(·, ) command (Ntzoufras, 2009)

t[i] ∼ dlnorm(mu[i], s2[i])I(cens.time[i], ) (13)

where cens.time[i] is either zero for uncensored outcome or the ith recorded survival time for
censored outcomes. Hence, censored survival times are assumed to be drawn from a truncated
lognormal distribution.

We choose small positive values for ασ, βσ, αβ, ββ to express vague prior knowledge about these
parameters setting ν = 1 (Marin et al., 2005a). We carried out posterior inference, using a Gibbs
sampling scheme as suggested by Diebolt & Robert, 1994 and Robert & Casella, 2000, by the
introducing of an indicator variables Zi, i = 1, · · · , n, which define from which element of the
mixture the ith observation has been generated. Thus,

p(Zi = j | K,ω = ω j) (14)

As in Lunn et al., 2000 and Spiegelhalter et al., 2002, here, we sample the Zi’s by comput-
ing posterior probabilities of membership, and the other parameters are sampled from their
full posterior distributions, conditional on the latent indicators through the WinBUGS software
package. Thus,

f (µ j | µ− j, s2, ω, t, x, θ, σ2, α, β, ν) ∼ Normal


s2

jθ + σ2 ∑
ti∈t j

log(ti)2

s2
j + σ2n j

,
σ2s2

j

s2
j + σ2n j


f (s2

j | µ j, µ− j, ν, θ, σ
2, α, β, t) ∼ inverse-Gamma

α +
n j

2
, β +

1
2

∑
ti∈t j

(log(ti − µ j)
2


f (σ2 | s2

j , µ j, µ− j, ν, θ, α, β, t) ∼ Inverse-Gamma
(
ασ +

n
2
, βσ +

n∑
j=1

(µ j − θ)
2
)

f (β | αβ, ββ, s2) ∼ Gamma

αβ + αn, ββ +

n∑
j=1

1
s2

j


f (θ | σ2, s2

j , µ j, µ− j, ν, θ, α, β, t) ∼ Normal


σ2µθ + σ2

θ

n∑
j=1
µ j

σ2 + σ2
θn

,
σ2
θσ

2

σ2 + σ2
θn



(15)
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For ν, an auxiliary variable u is introduced and a Beta distribution prior is assigned to ν (Escobar
& West, 1995). Then ν sampled from a mixed Gamma posterior distribution

f (u | ν) ∼ Beta(ν + 1, n)

f (ν | u) = cGamma(αν + n, βν − log(u)) + (1 − c)Gamma(αν + n − 1, βν − log(u)),
(16)

where

c =
αν + n − 1

n(βν − log(u)) + αν + n − 1
(17)

Finally, the conditional posterior of the mixing weightω, f (ω|µ j, s2
j , µ− j, θ, α, σ

2, ν, β, t) is drawn
by first drawing z j independently from

Beta (1, ν + n) (18)

Kottas, 2006 introduces a procedure is based on the constructive definition of the Dirichlet

process which computes ω j = z j

j−1∏
i=1

zi.

4. Results
4.1 Simulated Data

Based on the nature of the survival data, a mixture of two Lognormal (LN) distributions is
considered. This mixture has a long tail (Singpurwalla, 2006) which can be controlled by dis-
persion parameters of each mixture component, and also corresponds to the mixture distribution
that represents the probability distribution of observations in the overall population. This true
mixture model (Mclachlan & Peel, 2000) is given as

0.4LN(4, 0.16) + 0.6LN(5, 0.09) (19)

Initially, we simulated a sample of size n = 100 from the two component mixture with 10% of
the sampled data being right censored and the remaining 88% completely observed.

We run the Bayesian MCMC in WinBUGS for 10000 observations (5000 to burn-in) and inves-
tigated the distribution of f (t|µ j, s2

j), treating θ, σ2 and β as random parameters in the DPLNM
model. Since very little is known about the true values of these parameters, we used vague
Gamma priors, the non-informative distributions, as discussed in section 3, so as to generate
survival data sets resembling mixture models (Kottas, 2006), as follows

ν ∼ Gamma(1, 0.1)

θ ∼ Normal(0, 106)

σ2 ∼ IG(2, 0.001)

β ∼ Gamma(1, 0.009976)

(20)
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Figure 1. Trace History for µ and s2.

These priors each have a variance of 106, so should not influence the posterior distribution
much. A large prior variance is indicative of a vague distribution and therefore reflects our
relative ignorance about the true parameters.

We initialized the model, running the chains to check for convergence. Figure 1 shows the trace
history of the value of µ and s2 from a burn-in period of 5000 at 10,000 iterations in the DPLNM
model. The plot illustrates that the mixing of the algorithm seems to be quite good, while
Convergence of the MCMC algorithm, assessed through multiple chains, was fast. Mixing of
the chains was also satisfactory considering the large number of latent variables involved. This
is a good indication that the chains have reached the equilibrium distribution. In Figure 2 we
illustrates the posterior distributions of these variables, and in Table 1 we show the summary
statistics results.

Table 1. Posterior estimates of the DPLNM model parameters from 10000 iterations after a
burn-in of 5000 for Gamma(1, 0.1).

Parameter Posterior Mean Posterior Std Dev 95% Bayesian CI
µ 0.808 0.149 (0.67, 1.11)
s2 3.17 1.09 (2.88, 5.66)
θ 0.204 0.117 (0.115, 0.493)
σ2 2.94 1.177 (3.07, 5.47)
β 1.18 0.380 (0.999, 1.61)

We can see that these values that the parameters posterior means for lies comfortably within
the 95% Bayesian CI. Within each data set the point estimates of the parameters are broadly
similar. However, the credible intervals vary and potentially could lead to different inferences.

We can see in Figure 2 that the posterior densities of the parameters do look like Gamma distri-
butions.

4.2 Prior Sensitivity

In this section we investigate the sensitivity of the DPLNM model to the form of prior used.
An important criticism of the Bayesian method is the subjectivity inherent in the choice of prior
(Bernardo & Smith, 1994). Bayesian modeling requires the specification of priors for model
parameters.

We consider three priors for ν, Gamma(2, 0.9), Gamma(2, 0.1) and Gamma(3, 0.05) distribu-
tions, yielding increasing values for the prior mean and variance of ν. These distributions
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Figure 2. Posterior densities for β, θ, µ, σ2 and s2 for ν ∼ Gamma(1, 0.1).

all have large variances, so are suitably vague, but the distributions themselves have differ-
ent shapes. In all cases, there is learning for ν from the data, although, under the more dispersed
priors, the tail of the posterior is affected by the prior. However, the posterior changes are cer-
tainly less dramatic than the changes in the prior. We report the estimation results in terms of
the mean and the 95% credible interval in Table 2.

Table 2. Posterior estimates and Credible Intervals of DPLNM model parameters for Different
ν Gamma Priors.

Gamma(2, 0.9) Gamma(3, 0.05)

Parameter Mean SD CI Mean SD CI

µ 0.835 0.209 (0.755, 1.45) 0.893 0.269 (0.748, 2.07)

s2 3.46 1.29 (3.68, 4.70) 3.96 1.59 (3.69, 5.83)

The figure show that posterior point estimates under the three different priors for ν all give rel-
atively very similar distributions, suggesting that the model is not very sensitive to changes in
the prior distribution. However in some instances a Gamma(3, 0.05) prior distribution consis-
tently gives wider credible intervals. In all cases, there is learning for ν from the data, although,
under the more dispersed priors, the tail of the posterior is affected by the prior. However, the
posterior changes are certainly less dramatic than the changes in the prior. This demonstrated
that a relatively small prior presence is adequate on posterior inference for DPLNM model
implementation.

4.3 Real Dataset
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The case study employed in this paper consists data on remission times, for leukemia patients
taken from Freireich et al., 1963. The study involves two treatments, 6-Mercaptopurine (6-MP)
and a Placebo each with 21 patients. The values of the 6-MP treatment were heavily censored
while for the placebo they were completely observed. As in the simulated example, we used
the same prior distributions and a MCMC algorithm with 10000 iterations (5000 to burn-in) to
fit the data. Freireich et al., 1963 had shown that patients received the 6-MP treatment have a
longer survival rate than the patients in the placebo group. We see from the resulting parameter
estimates, under three prior choices, shown in Table 3 for censored values of 6-MP treatment,
that there is a correspondence between the result obtained by Freireich et al., 1963 and ours.
Thus posterior inference is robust with respect to the choice of prior on ν.

Table 3. Posterior estimates and Credible Intervals of DPLNM model parameters for Different
ν Gamma Priors for 6-Mercaptopurine (6-MP).

Gamma(1, 0.1) Gamma(2, 0.9) Gamma(3, 0.05)

Par Mean SD CI Mean SD CI Mean SD CI

µ 0.826 0.209 (0.78, 1.21) 0.835 0.219 (0.755, 1.45) 0.893 0.269 (0.748, 2.07)

s2 3.46 1.29 (3.68, 4.70) 3.76 1.41 (3.99, 5.35) 3.96 1.59 (3.69, 5.93)

Of more interest is the effect of these prior choices on posterior inference for survival quanti-
ties. Since the DPLNM model is sensitive to the choice of prior survival quantities such as the
survival function, mean survival time of a patient or the expected value of the hazard function
can be estimated.

5. Conclusions and future Work
We have investigated the effect of prior choices on posterior inference for DPLNM model im-
plementation and demonstrated that a relatively small prior presence is adequate. The priors
we used were all vague, to reflect our lack of knowledge about the parameters, but of differ-
ent forms. Since the results showed relatively similar expected values for the parameters, we
concluded that the DPLNM model is relatively robust to the form of prior used.

While mixture mixtures models seem plausible, the complexity of adding more parameters to
be estimated can result to poor estimation. The decision on what assumption to impose is
arbitrary hence can result in slow convergence of chains. Thus these complications may not
warrant mixtures as a better alternative. For these reasons, this may present possibilities for
future work.

Finally, as an extension we may also test the fit by use of Compound distribution model where
we combine distributions in such a way as to obtain an approximate aggregate distribution for
estimation, and then consider various censoring mechanisms.
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