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ABSTRACT 

In 1856, Hamiltonian introduced the Hamiltonian Graph where a Graph which is covered all the 

vertices without repetition and end with starting vertex. In this Paper I would like to prove that Let 

“G” be a Complete graph with at least four vertices. Then, the line graph “L(G)” is Complete 

Hamiltonian if and only if “G” is dominating trailable.  

 

Key Words : Graph, Hamiltonian Graph, Complete Graph, Neighborhood, Locally Complete 

Graph. 

Introduction : 

Graphs, considered here, are finite, undirected and simple and complete Graphs being followed 

for terminology and notation. let G = (V , E) be a graph, with V the set of vertices and E the set of 

edges. Suppose that W is a nonempty subset of V . The sub graph of G, whose vertex set is W 

and whose edge set is the set of those edges of G that have both ends in W , is called the sub 
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graph of G induced by W and is denoted by G[W]. For any vertex ν in V , the neighbour set of ν 

is the set of all vertices adjacent to ν. This set is denoted by N(ν). For a graph G = (V , E), we 

shall denote 

δ(G) = min |N(v)|     (G) = max |N(v) |  

                      ν V    ν V 

 

a graph G = (V , E) is locally complete , if for each vertex ν the graph G[N(ν)] is complete . With 

every graph G, having at least one edge, there exists associated a graph L(G), called the line 

graph of G, whose vertices, can be put in a one-to-one correspondence with the edges of G, in 

such a way that two vertices of L(G) are adjacent if and only if the corresponding edges of G are 

adjacent. 

The neighborhood is often denoted NG(v) or (when the graph is unambiguous) N(v). The same 

neighborhood notation may also be used to refer to sets of adjacent vertices rather than the 

corresponding induced sub graphs. The neighborhood described above does not include v itself, 

and is more specifically the open neighborhood of v; it is also possible to define a 

neighborhood in which v itself is included, called the closed neighborhood and denoted by 

NG[v]. When stated without any qualification, a neighborhood is assumed to be open. 

1.1 Definition:  A graph – usually denoted G(V,E) or G = (V,E) – consists of set of vertices V 

together with a set of edges E. The number of vertices in a graph is usually denoted n while the 

number of edges is usually denoted m. 

1.2 Definition: Vertices are also known as nodes, points and (in social networks) as actors, agents 

or players.   

1.3 Definition:  Edges are also known as lines and (in social networks) as ties or links. An edge  

e = (u,v) is defined by the unordered pair of vertices that serve as its end points.  
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1.4 Example: The graph depicted in Figure 1 has vertex set V={a,b,c,d,e.f} and edge set  

E = {(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)}. 
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                                                                     Figure 1. 

1. 5 Definition: Two vertices u and v are adjacent if there exists an edge (u,v) that connects them.  

1.6 Definition: An edge (u,v) is said to be incident upon nodes u and v.  

1.7 Definition: An edge e = (u,u) that links a vertex to itself is known as a self-loop or reflexive 

tie. 

1.8 Definition: Every graph has associated with it an adjacency matrix, which is a binary nn 

matrix A in which aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 

otherwise. The natural graphical representation of an adjacency matrix is a table, such as shown 

below. 

 a b c d e f 

a 0 1 0 0 0 0 

b 1 0 1 0 0 0 

c 0 1 0 1 1 0 

d 0 0 1 0 1 0 

e 0 0 1 1 0 1 

f 0 0 0 0 1 0 

                                            Adjacency  matrix for graph in Figure 1. 
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1.9 Definition:  Examining either Figure 1 or given adjacency Matrix, we can see that not every 

vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to 

be complete.  

1.10 Definition: While not every vertex in the graph in Figure 1 is adjacent, one can construct a 

sequence of adjacent vertices from any vertex to any other. Graphs with this property are called 

connected.  

1.11 Note: Reachability. Similarly, any pair of vertices in which one vertex can reach the other 

via a sequence of adjacent vertices is called reachable. If we determine reachability for every pair 

of vertices, we can construct a reachability matrix R such as depicted in Figure 2. The matrix R 

can be thought of as the result of applying transitive closure to the adjacency matrix A. 
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                                                                          Figure:  2 

1.12 Definition :  A walk is closed if vo = vn.degree of the vertex and is denoted d(v). 

1.13 Definition : A tree is a connected graph that contains no cycles. In a tree, every pair of 

points is connected by a unique path. That is, there is only one way to get from A to B. 
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Figure 3: A labeled tree with 6 

vertices and 5 edges 

1.14 Definition: A spanning tree for a graph G is a sub-graph of G which is a tree that includes 

every vertex of G. 

1.15 Definition:  The length of a walk (and therefore a path or trail) is defined as the number of 

edges it contains. For example, in Figure 3, the path a,b,c,d,e has length 4.  

1.16 Definition: The number of vertices adjacent to a given vertex is called the degree of the 

vertex and is denoted d(v). 

1.17 Definition : In the mathematical field of graph theory, a bipartite graph (or bigraph) is a 

graph whose vertices can be divided into two disjoint sets U and V such that every edge connects 

a vertex in U to one in V; that is, U and V are independent sets. Equivalently, a bipartite graph is a 

graph that does not contain any odd-length cycles. 

                          

                                                    Figure 4:   Example of a  bipartite graph. 
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1.18 Definition : An Eulerian circuit in a graph G is circuit which includes every vertex and 

every edge of G. It may pass through a vertex more than once, but because it is a circuit it traverse 

each edge exactly once. A graph which has an Eulerian circuit is called an Eulerian graph. An 

Eulerian path in a graph G is a walk which passes through  every vertex of G and which traverses 

each edge of G exactly once 

1.19 Example :  Königsberg bridge problem: The city of Königsberg (now Kaliningrad) had 

seven bridges on the Pregel River. People were wondering whether it would be possible to take a 

walk through the city passing exactly once on each bridge. Euler built the representative graph, 

observed that it had vertices of odd degree, and proved that this made such a walk impossible. 

Does there exist a walk crossing each of the seven bridges of Königsberg exactly once? 

                                                                                

                                           Figure 5:   Konigsberg problem 

2. Complete Graphs, Locally Complete Graphs, Hamiltonian Graphs, Line Graphs  

 

In this section we have to prove that main theorem using definitions. 

2.1 Definition: A Hamilton circuit is a path that visits every vertex in the graph exactly once and 

return to the starting vertex. Determining whether such paths or circuits exist is an NP-complete 

problem. In the diagram below, an example Hamilton Circuit would be 
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2.2 Example : 

                        

                            Figure: Hamilton Circuit would be AEFGCDBA. 

2.3 Definition : Compete Graph: A simple graph in which there exists an edge between every 

pair of vertices is called a complete graph. 

2.4 Definition : Let { v1, v2……vn}be the vertex set of a graph G, and for each ‘α’.  

let Ni *denote the closed neighborhood of va. Let Na be any subset of  Nα
* containing va which 

generates a complete  subgraph Ca of G. Then Ca is called a complete  sub neighborhood of va, 

and the indexed family C* = {C1, C2,…. , Cn } is called a complete family for G if G =  C* . A 

graph G is called locally complete iff G has at least one complete family. 

 

2.5 Examples : It is easily seen that complete graphs, trees, and unicyclic graphs are also locally 

complete.  

The complete bigraph K3,2 is the smallest (nontrivial, connected) graph which fails to be locally 

complete. 

2.6 Proposition : If G is Hamiltonian, then L(G) is Hamiltonian.  

Proof : This is a nice, basic result to see if a line graph is Hamiltonian.  

A graph is Hamiltonian if there exists a Hamiltonian cycle in the graph.  

It may be easier to find a Hamiltonian cycle in G than L(G), ), but from this proposition , we 

would get that L( G) is Hamiltonian.  

2.7 Theorem : Let  ‘G’ be a complete  graph  having   n ≥ 3 vertices  then  L(G)  is Complete 

Hamiltonian 
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2.8 Theorem :  Let G be a Complete graph with at least four vertices. Then, the line graph  

L(G) is Complete Hamiltonian if and only if G is dominating trail able.  

Proof. We begin by assuming L(G) is Complete Hamiltonian. 

So, between any two vertices, x and y, in L(G), 

we have a Hamiltonian path written as  

x = x0, x1, x2, ..., xn = y, where n + 1 is the number of vertices in L(G). 

Since the vertices of L(G) correspond to the edges of G, then x0, x1, x2, ..., xn is a sequence of 

edges in G, where xi E(G) for i = 0, 1, ...., n.  

Let vi be the common vertex between xi and xi+1 in G and create a list of vertices as 

 v0, v1, ..., vn.  

Now, in this list of vertices v0, v1, ..., vn, some vertices may appear more than once. 

 So, create a subset w1, w2, ..., wk, where each vertex appears only once and k n. 

 In creating this, once a vertex is listed, we won't list it again.  

Now, for two vertices wi and wi+1, where i = 1, 2, ..., k, list the corresponding edge between 

these two as ei.  

Then, x1, w1, e1, w2, e2, ..., wk, ek, y is a dominating trail in G between edges 

 x and y,  

since every edge in G is incident with one of w1, w2, ..., wk.  

Since this trail works for all edges in G,  

we can say that G is dominating trailable.  

Conversely, we can assume G is dominating trailable, and let x and y be edges of G.  

Then, there exists a dominating trail between x and y written as x, v1, x1, v2, ..., vn, xn = y, 

where xi  E(G) for all i = 1, 2, ..., n. 
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 So, n is the number  of internal vertices of the trail. For the remaining edges not listed in the 

dominating trail, we will partition in the following way. 

 Create n sets, labeled S1, S2, ..., Sn.  

Next, for an edge incident with vi, place that edge in the corresponding set, Si.  

Then, start this process with v1, and once an edge is placed in a set, do not consider that edge 

again. Notice that some sets may be empty, and some sets may have more than one element. 

Define the elements of Si as si,1, 1, si,2, 2, ..., si,r, r where r is the length of Si.  

Then, consider the list x, S1, x1, S2, ..., Sn, y written as  

x, s1,1, 1, s1,2, 2, ..., s1,r, r, x1, s2,1, 1, ..., sn,r, r, y.  

Since the edges of G correspond to  

This the vertices of L(G), we now classify this sequence as a list of vertices in L(G). This  

sequence is a path, since it consists of distinct vertices of L(G) with each vertex in the list 

adjacent to the one before and after it. By construction, we have accounted  

for every edge in G, and thus every vertex in L(G). makes the path  

x, s1,1, 1, s1,2, 2, ..., s1,r, r, x1, s2,1, 1, ..., sn,r, r, y a Hamiltonian path in L(G). 

 Since this is true for any x and y E(G), 

 L(G) is Complete Hamiltonian  

Hence  The Theorem. 

 

 

 

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-3 | Issue-3 | March,2017 | Paper-1 9            



References : 

[1] Bondy J.A. and V. Chvátal, A Method in Graph Theory, Discr. Math. 15 1976), pp 111-136. 

[2] Dirac G.A., Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2 (1952), pp 69-81. 

[3]. Garey M.R and D.S. Jhonson, Computers and Intractability: A Guide to the Theory of 

NPCompleteness, W.H. Freeman and Company, New York. 

[4] O. Ore, Note on Hamiltonian Circuits, Am. Mat. Monthly 67 (1960), pp 55. 

[5]. West D.B, Introduction to Graph Theory, Prentice-Hall, Inc., New Jersey. 

[6] Williams – Nash, C.St.J.A. “Hamiltonian Arcs and Circuits” in recent trends in graph theory 

ed. By M. Capobianco et al., Springer – verlag, Berlin, 1971. 

[7] V.Chvatal “New directions in Hamiltonian Graph theory” In New directions in graph theory 

ed. By F.Harary, Academic press, N.Y.London, 1973. 

[8] Venu Madhava Sarma.S and T.V. Pradeep Kumar International Journal of Mathematical 

Archive-2(12), 2011,Page 2538-2542. 

[9] Venu Madhava Sarma.S International Journal of Computer Application, Issue 2, Volume 

1(February 2012) , Page 21-31. 

[10] Venu Madhava Sarma.S and T.V.Pradeep Kumar International J. of Math. Sci. & Engg. 

Appls. (IJMSEA) ISSN 0973-9424, Vol. 6 No. III (May, 2012), pp. 47-54 

[11] Venu Madhava Sarma.S and T.V.Pradeep Kumar proceedings of Two Day UGC National 

seminar on “Modern Trends in Mathematics and Physical Sciences ( NSMTMPS – 2012) dated 

20th  , 21st Jan, 2012. 

[12] D. P. Geller, The square root of a digraph, J. Combinatorial Theory, 5 (1968), 320-321. 

 

[ 13] F. Harary, Graph Theory , Addison-Wesley, Reading, Mass., 1969. 

 

[14] A. Mukhopadhyay, The square root of a graph, J. Combinatorial Theory, 2 (1967),  

290-295. 

 

 

IJRDO-Journal of Mathematics                             ISSN: 2455-9210

Volume-3 | Issue-3 | March,2017 | Paper-1 10            




