APPLICATION OF LINE GRAPHS AND COMPLETE HAMILTONIAN GRAPHS

S.VENU MADAVA SARMA
Research Scholar, RAYALASEEMA UNIVERSITY KURNOOL ANDHRA PRADESH

Email : svm190675@gmail.com

T.V.PRADEEP KUMAR

Assistant Professor of Mathematics
A.N.U.College of Engineering, Acharya Nagarjuna University.

Abstract

In 1856, Hamiltonian introduced the Hamiltonian Graph where a Graph which is covered all the vertices without repetition and end with starting vertex. In this Paper I would like to prove that Let " G " be a Complete graph with at least four vertices. Then, the line graph " $L(G)$ " is Complete Hamiltonian if and only if " G " is dominating trailable.

Key Words : Graph, Hamiltonian Graph, Complete Graph, Neighborhood, Locally Complete Graph.

Introduction :

Graphs, considered here, are finite, undirected and simple and complete Graphs being followed for terminology and notation. let $G=(V, E)$ be a graph, with V the set of vertices and E the set of edges. Suppose that W is a nonempty subset of V. The sub graph of G, whose vertex set is W and whose edge set is the set of those edges of G that have both ends in W, is called the sub
graph of G induced by W and is denoted by $G[W]$. For any vertex v in V, the neighbour set of v is the set of all vertices adjacent to v. This set is denoted by $N(v)$. For a graph $G=(V, E)$, we shall denote

$$
\begin{array}{cc}
\delta(G)=\min |\mathrm{N}(\mathrm{v})| & \Delta(\mathrm{G})=\max |\mathrm{N}(\mathrm{v})| \\
v \in V & v \in V
\end{array}
$$

a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is locally complete, if for each vertex v the graph $\mathrm{G}[\mathrm{N}(v)]$ is complete. With every graph G, having at least one edge, there exists associated a graph $L(G)$, called the line graph of G , whose vertices, can be put in a one-to-one correspondence with the edges of G, in such a way that two vertices of $L(G)$ are adjacent if and only if the corresponding edges of G are adjacent.

The neighborhood is often denoted $N_{G}(v)$ or (when the graph is unambiguous) $N(v)$. The same neighborhood notation may also be used to refer to sets of adjacent vertices rather than the corresponding induced sub graphs. The neighborhood described above does not include v itself, and is more specifically the open neighborhood of v; it is also possible to define a neighborhood in which v itself is included, called the closed neighborhood and denoted by $N_{G}[v]$. When stated without any qualification, a neighborhood is assumed to be open.
1.1 Definition: A graph - usually denoted $\mathrm{G}(\mathrm{V}, \mathrm{E})$ or $\mathrm{G}=(\mathrm{V}, \mathrm{E})-$ consists of set of vertices V together with a set of edges E. The number of vertices in a graph is usually denoted n while the number of edges is usually denoted m.
1.2 Definition: Vertices are also known as nodes, points and (in social networks) as actors, agents or players.
1.3 Definition: Edges are also known as lines and (in social networks) as ties or links. An edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ is defined by the unordered pair of vertices that serve as its end points.
1.4 Example: The graph depicted in Figure 1 has vertex set $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e} . \mathrm{f}\}$ and edge set $\mathrm{E}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{c}, \mathrm{e}),(\mathrm{d}, \mathrm{e}),(\mathrm{e}, \mathrm{f})\}$.

Figure 1.

1. 5 Definition: Two vertices u and v are adjacent if there exists an edge (u, v) that connects them.
1.6 Definition: An edge (u, v) is said to be incident upon nodes u and v.
1.7 Definition: An edge $\mathrm{e}=(\mathrm{u}, \mathrm{u})$ that links a vertex to itself is known as a self-loop or reflexive tie.
1.8 Definition: Every graph has associated with it an adjacency matrix, which is a binary $n \times n$ matrix A in which $\mathrm{a}_{\mathrm{ij}}=1$ and $\mathrm{a}_{\mathrm{ji}}=1$ if vertex vi is adjacent to vertex vj , and aij $=0$ and $\mathrm{aji}=0$ otherwise. The natural graphical representation of an adjacency matrix is a table, such as shown below.

	a	b	c	d	e	f
a	0	1	0	0	0	0
b	1	0	1	0	0	0
c	0	1	0	1	1	0
d	0	0	1	0	1	0
e	0	0	1	1	0	1
f	0	0	0	0	1	0

Adjacency matrix for graph in Figure 1.
1.9 Definition: Examining either Figure 1 or given adjacency Matrix, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete.
1.10 Definition: While not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence of adjacent vertices from any vertex to any other. Graphs with this property are called connected.
1.11 Note: Reachability. Similarly, any pair of vertices in which one vertex can reach the other via a sequence of adjacent vertices is called reachable. If we determine reachability for every pair of vertices, we can construct a reachability matrix R such as depicted in Figure 2. The matrix R can be thought of as the result of applying transitive closure to the adjacency matrix A.

Figure: 2
1.12 Definition : A walk is closed if $\mathrm{v}_{\mathrm{o}}=\mathrm{v}_{\mathrm{n}}$. degree of the vertex and is denoted $\mathrm{d}(\mathrm{v})$.
1.13 Definition : A tree is a connected graph that contains no cycles. In a tree, every pair of points is connected by a unique path. That is, there is only one way to get from A to B .

Figure 3: A labeled tree with ϵ vertices and 5 edges
1.14 Definition: A spanning tree for a graph G is a sub-graph of G which is a tree that includes every vertex of G.
1.15 Definition: The length of a walk (and therefore a path or trail) is defined as the number of edges it contains. For example, in Figure 3, the path a, b, c, d, e has length 4.
1.16 Definition: The number of vertices adjacent to a given vertex is called the degree of the vertex and is denoted d(v).
1.17 Definition : In the mathematical field of graph theory, a bipartite graph (or bigraph) is a graph whose vertices can be divided into two disjoint sets U and V such that every edge connects a vertex in U to one in V; that is, U and V are independent sets. Equivalently, a bipartite graph is a graph that does not contain any odd-length cycles.

Figure 4: Example of a bipartite graph.
1.18 Definition : An Eulerian circuit in a graph G is circuit which includes every vertex and every edge of G. It may pass through a vertex more than once, but because it is a circuit it traverse each edge exactly once. A graph which has an Eulerian circuit is called an Eulerian graph. An Eulerian path in a graph G is a walk which passes through every vertex of G and which traverses each edge of G exactly once
1.19 Example : Königsberg bridge problem: The city of Königsberg (now Kaliningrad) had seven bridges on the Pregel River. People were wondering whether it would be possible to take a walk through the city passing exactly once on each bridge. Euler built the representative graph, observed that it had vertices of odd degree, and proved that this made such a walk impossible. Does there exist a walk crossing each of the seven bridges of Königsberg exactly once?

Figure 5: Konigsberg problem

2. Complete Graphs, Locally Complete Graphs, Hamiltonian Graphs, Line Graphs

In this section we have to prove that main theorem using definitions.

2.1 Definition: A Hamilton circuit is a path that visits every vertex in the graph exactly once and return to the starting vertex. Determining whether such paths or circuits exist is an NP-complete problem. In the diagram below, an example Hamilton Circuit would be

2.2 Example :

Figure: Hamilton Circuit would be AEFGCDBA.

2.3 Definition : Compete Graph: A simple graph in which there exists an edge between every pair of vertices is called a complete graph.
2.4 Definition : Let $\{\mathrm{v} 1, \mathrm{v} 2 \ldots . . \mathrm{vn}\}$ be the vertex set of a graph G , and for each ' α '. let $N i$ *denote the closed neighborhood of v_{a}. Let N_{a} be any subset of $\mathrm{N}_{\alpha}{ }^{*}$ containing v_{a} which generates a complete subgraph C_{a} of G. Then C_{a} is called a complete sub neighborhood of v_{a}, and the indexed family $\mathrm{C}^{*}=\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, C_{\mathrm{n}}\right\}$ is called a complete family for G if $\mathrm{G}=\cup \mathrm{C}^{*}$. A graph G is called locally complete iff G has at least one complete family.
2.5 Examples : It is easily seen that complete graphs, trees, and unicyclic graphs are also locally complete.

The complete bigraph $K_{3,2}$ is the smallest (nontrivial, connected) graph which fails to be locally complete.
2.6 Proposition : If G is Hamiltonian, then $\mathrm{L}(\mathrm{G})$ is Hamiltonian.

Proof: This is a nice, basic result to see if a line graph is Hamiltonian.
A graph is Hamiltonian if there exists a Hamiltonian cycle in the graph.
It may be easier to find a Hamiltonian cycle in G than $L(G)$, , but from this proposition, we would get that $\mathrm{L}(\mathrm{G})$ is Hamiltonian.
2.7 Theorem : Let ' G ' be a complete graph having $n \geq 3$ vertices then $L(G)$ is Complete Hamiltonian
2.8 Theorem : Let G be a Complete graph with at least four vertices. Then, the line graph
$\mathrm{L}(\mathrm{G})$ is Complete Hamiltonian if and only if G is dominating trail able.
Proof. We begin by assuming $\mathrm{L}(\mathrm{G})$ is Complete Hamiltonian.
So, between any two vertices, x and y, in $L(G)$,
we have a Hamiltonian path written as
$x=x_{0}, x_{1}, x_{2}, \ldots, x_{n}=y$, where $n+1$ is the number of vertices in $L(G)$.
Since the vertices of $L(G)$ correspond to the edges of G, then $x_{0}, x_{1}, x 2, \ldots, x n$ is a sequence of edges in G, where $x i \in E(G)$ for $i=0,1, \ldots ., n$.

Let vi be the common vertex between xi and $x i+1$ in G and create a list of vertices as v0, v1, ..., vn.

Now, in this list of vertices $\mathrm{v} 0, \mathrm{v} 1, \ldots, \mathrm{vn}$, some vertices may appear more than once.
So, create a subset $w 1, w 2, \ldots, w k$, where each vertex appears only once and $k \leq n$.
In creating this, once a vertex is listed, we won't list it again.
Now, for two vertices wi and wi +1 , where $\mathrm{i}=1,2, \ldots, \mathrm{k}$, list the corresponding edge between these two as ei.

Then, $\mathrm{x} 1, \mathrm{w} 1, \mathrm{e} 1, \mathrm{w} 2, \mathrm{e} 2, \ldots, \mathrm{wk}, \mathrm{ek}, \mathrm{y}$ is a dominating trail in G between edges x and y,
since every edge in G is incident with one of $\mathrm{w} 1, \mathrm{w} 2, \ldots, \mathrm{wk}$.
Since this trail works for all edges in G,
we can say that G is dominating trailable.
Conversely, we can assume G is dominating trailable, and let x and y be edges of G .
Then, there exists a dominating trail between x and y written as $\mathrm{x}, \mathrm{v} 1, \mathrm{x} 1, \mathrm{v} 2, \ldots, \mathrm{vn}, \mathrm{xn}=\mathrm{y}$, where $\mathrm{xi} \in \mathrm{E}(\mathrm{G})$ for all $\mathrm{i}=1,2, \ldots, \mathrm{n}$.

So, n is the number of internal vertices of the trail. For the remaining edges not listed in the dominating trail, we will partition in the following way.

Create n sets, labeled S1, S2, ..., Sn.
Next, for an edge incident with vi, place that edge in the corresponding set, Si .
Then, start this process with v 1 , and once an edge is placed in a set, do not consider that edge again. Notice that some sets may be empty, and some sets may have more than one element. Define the elements of Si as $\mathrm{s}_{\mathrm{i}}, 1,1, \mathrm{~s}_{\mathrm{i}}, 2,2, \ldots, \mathrm{Si}_{\mathrm{i}, \mathrm{r}}, \mathrm{r}$ where r is the length of S_{i}.

Then, consider the list $\mathrm{x}, \mathrm{S}_{1}, \mathrm{x}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{Sn}$, y written as
$\mathrm{x}, \mathrm{s}_{1}, 1,1, \mathrm{~s}_{1}, 2,2, \ldots, \mathrm{~s}_{1}, \mathrm{r}, \mathrm{r}, \mathrm{x}_{1}, \mathrm{~s}_{2}, 1,1, \ldots, \mathrm{sn}, \mathrm{r}, \mathrm{r}, \mathrm{y}$.
Since the edges of G correspond to
This the vertices of $L(G)$, we now classify this sequence as a list of vertices in $L(G)$. This sequence is a path, since it consists of distinct vertices of $L(G)$ with each vertex in the list adjacent to the one before and after it. By construction, we have accounted
for every edge in G, and thus every vertex in $L(G)$. makes the path
$\mathrm{x}, \mathrm{s}_{1}, 1,1, \mathrm{~s}_{1}, 2,2, \ldots, \mathrm{~s}_{1}, \mathrm{r}, \mathrm{r}, \mathrm{x}_{1}, \mathrm{~s}_{2}, 1,1, \ldots, \mathrm{sn}_{1}, \mathrm{r}, \mathrm{r}, \mathrm{y}$ a Hamiltonian path in $\mathrm{L}(\mathrm{G})$.
Since this is true for any x and $y \in E(G)$,
$\mathrm{L}(\mathrm{G})$ is Complete Hamiltonian
Hence The Theorem.

References :

[1] Bondy J.A. and V. Chvátal, A Method in Graph Theory, Discr. Math. 15 1976), pp 111-136.
[2] Dirac G.A., Some Theorems on Abstract Graphs, Proc. Lond. Math. Soc. 2 (1952), pp 69-81.
[3]. Garey M.R and D.S. Jhonson, Computers and Intractability: A Guide to the Theory of NPCompleteness, W.H. Freeman and Company, New York.
[4] O. Ore, Note on Hamiltonian Circuits, Am. Mat. Monthly 67 (1960), pp 55.
[5]. West D.B, Introduction to Graph Theory, Prentice-Hall, Inc., New Jersey.
[6] Williams - Nash, C.St.J.A. "Hamiltonian Arcs and Circuits" in recent trends in graph theory ed. By M. Capobianco et al., Springer - verlag, Berlin, 1971.
[7] V.Chvatal "New directions in Hamiltonian Graph theory" In New directions in graph theory ed. By F.Harary, Academic press, N.Y.London, 1973.
[8] Venu Madhava Sarma.S and T.V. Pradeep Kumar International Journal of Mathematical Archive-2(12), 2011,Page 2538-2542.
[9] Venu Madhava Sarma.S International Journal of Computer Application, Issue 2, Volume 1(February 2012), Page 21-31.
[10] Venu Madhava Sarma.S and T.V.Pradeep Kumar International J. of Math. Sci. \& Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 6 No. III (May, 2012), pp. 47-54
[11] Venu Madhava Sarma.S and T.V.Pradeep Kumar proceedings of Two Day UGC National seminar on "Modern Trends in Mathematics and Physical Sciences (NSMTMPS - 2012) dated $20^{\text {th }}, 21$ st Jan, 2012.
[12] D. P. Geller, The square root of a digraph, J. Combinatorial Theory, 5 (1968), 320-321.
[13] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.
[14] A. Mukhopadhyay, The square root of a graph, J. Combinatorial Theory, 2 (1967), 290-295.

