NONESSENTIAL PQ-INJECTIVE MODULES S. Wongwai, N. Thiangtong, V. Pimonlsith and P. Pornpunpaibool

Faculty of Architecture, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand <u>wsarun@rmutt.ac.th</u> <u>Nattawut_t@rmutt.ac.th</u> <u>Vithaya_p@rmutt.ac.th</u> <u>Pornnapa_p@rmutt.ac.th</u>

Abstract : Let M be a right R – module. A right R – module N is called *nonessential* principally M - injective (briefly, nonessential PM - injective) if, for each $s \in S$ with $s(M) \not\subset^e M$, any R – homomorphism from s(M) to N can be extended to an R – homomorphism from M to N. M is called *nonessential principally quasi- injective* (briefly, nonessential PQ - injective) if, it is nonessential PM - injective. In this paper, we give some characterizations and properties of nonessential PQ - injective modules.

2010 Mathematics Subject Classification: 13C10, 13C11, 13C60. Key words and phrases: nonessential PQ - injective modules and Endomorphism Rings.

1. Introduction

Let R be a ring. A right R -module M is called *principally injective* (or P -*injective*) [8], if every R -homomorphism from a principal right ideal of R to M can be extended to an R -homomorphism from R to M. Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$ where 1 and r are left and right annihilators, respectively. In [9], Nicholson, Park, and Yousif extended this notion of principally injective rings to the one for modules. In [5], W. Junchao introduced the definition of Jcp -injective rings , a ring R is called right Jcp -injective if for each $a \in R \setminus Z_r$, any R -homomorphism from aR to R can be extended to an R -homomorphism from R to R. A right R -module M is called *almost mininjective* [11] if, for any simple right ideal kR of R, there exists an S -submodule X_k of M such that $l_M(r_R(m)) = Mk \oplus X_k$ as left S -modules. A ring R is called *right almost mininjective* if R_R is almost mininjective. In this note we introduce the definition of nonessential PQ - injective modules and give some characterizations and properties. Some important results which are known for P injective rings are hold for nonessential PQ - injective modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R – modules. For right R – modules M and N, $\operatorname{Hom}_{R}(M, N)$ denotes the set of all R – homomorphisms from M to N and S = $\operatorname{End}_{R}(M)$ denotes the endomorphism ring of M. If X is a subset of M the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_{R}(X)$ (resp. $l_{S}(X)$). By notation, N \subset^{\oplus} M (N \subset^{e} M) we mean that N is a direct summand (an essential submodule) of M. We denote the singular submodule of M by Z(M).

S. Wongwai, N. Thiangtong, V. Pimonlsith and P. Pornpunpaibool

2. Nonessential PM - injective modules

Recall that a submodule K of a right R – module M is *essential* (or *large*) in M if, every nonzero submodule L of M, we have $K \cap L \neq 0$. An element $m \in M$ is called *singular* if $r_R(m) \subset^e R$. M is called *nonsingular* if it contains no nontrivial singular element.

Definition 2.1. Let M be a right R – module. A right R – module N is called *nonessential principally* M - *injective* (briefly, *nonessential* PM - *injective*) if, for each $s \in S$ with $s(M) \not\subset^e M$, any R – homomorphism from s(M) to N can be extended to an R – homomorphism from M to N..

Example 2.2. Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, $M_R = R_R$ and $N_R = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$, then N is nonessential PM - injective.

Proof. It is clear that only $X_1 = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 0 \\ 0 & F \end{pmatrix}$ and $X_3 = N$ are nonzero

nonessential endomorphism images of M_R . Let $\phi: X_1 \to N$ be an R-homomorphism.

Since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in X_1$, there exists $x_{11}, x_{12} \in F$ such that $\varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix}$. Then $\varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & x_{12} \\ 0 & 0 \end{pmatrix}$. It follows that $x_{11} = 0$. Define $\hat{\varphi} \colon M \to N$ by $\hat{\varphi} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{12} & 0 \\ 0 & 0 \end{pmatrix}$. It is clear that $\hat{\varphi}$ is an R – homomorphism. Then $\hat{\varphi} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \hat{\varphi} \begin{pmatrix} (1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x_{12} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & x_{12} \\ 0 & 0 \end{pmatrix}$.

This show that $\hat{\phi}$ is an extension of ϕ . By the similar proof of X_1 , we can show for X_2 and it is clear for X_3 . Then N is nonessential PM - injective.

Lemma 2.3. Let M and N be a right R – modules. Then N is nonessential PM - injective if and only if for each $s \in S$ with $s(M) \not\subset^e M$,

 $\operatorname{Hom}_{R}(M, N) = \{ f \in \operatorname{Hom}_{R}(M, N) : f(\operatorname{Ker}(s)) = 0 \}.$

Proof. Clearly, $\operatorname{Hom}_{\mathbb{R}}(M, N) \simeq \{ f \in \operatorname{Hom}_{\mathbb{R}}(M, N) \colon f(\operatorname{Ker}(s)) = 0 \}.$

Let $f \in Hom_R(M, N)$ such that f(Ker(s)) = 0. Then there exists an R-homomorphism $\phi: s(M) \to N$ such that $\phi s = f$ by Factor Theorem

because Ker(s) \subset Ker(f). Since N is nonessential PM - injective, there exists an R-homomorphism $t: M \to N$ such that $\varphi = t\iota$ where $\iota: s(M) \to M$ is the inclusion map. Hence f = ts and therefore $f \in Hom_R(M, N)s$. Nonessential PQ - injective modules

3

1

Conversely, let $s \in S$ with $s(M) \not\subset^{e} M$ and $\phi : s(M) \to N$ be an R-homomorphism. Then $\phi s \in Hom_{R}(M, N)$ and $\phi s(Ker(s)) = 0$. By assumption, we have $\phi s = us$ for some $u \in Hom_{R}(M, N)$. This shows that N is nonessential PM - injective.

Lemma 2.4.

- (1) If N_i $(1 \le i \le n)$ are nonessential PM injective modules, then $\bigoplus_{i=1}^{n} N_i$ is nonessential PM injective.
- (2) Any direct summand of a nonessential PM injective module is again nonessential PM injective.
- (3) If $s \in S$ with $s(M) \not\subset^{e} M$ and s(M) is nonessential PM injective, then $s(M) \subset^{\oplus} M$.

Proof. (1) It is enough to prove the result for n = 2. Let $s \in S$ with $s(M) \not\subset^{e} M$ and $\varphi: s(M) \to N_1 \oplus N_2$ be an R-homomorphism. Since N_1 and N_2 are nonessential PM - injective, there exists R-homomorphisms $\varphi_1: M \to N_1$ and $\varphi_2: M \to N_2$ such that $\varphi_1 \iota = \pi_1 \varphi$ and $\varphi_2 \iota = \pi_2 \varphi$ where π_1 and π_2 are the projection maps from $N_1 \oplus N_2$ to N_1 and N_2 , respectively, and $\iota: s(M) \to M$ is the inclusion map. Put $\hat{\varphi} = \iota_1 \varphi_1 + \iota_2 \varphi_2: M \to N_1 \oplus N_2$. Thus it is clear that $\hat{\varphi}$ extends φ .

- (2) By definition.
- (3) Since s(M) is nonessential PM injective, there exists an R homomorphism $\varphi: M \to s(M)$ such that $\varphi \iota = 1_{s(M)}$ where $\iota: s(M) \to M$ is the inclusion map. Then by
- [1, Lemma 5.1], ι is a split monomorphism, therefore $s(M) \subset^{\oplus} M$.

Theorem 2.5. The following conditions are equivalent for a projective modules M. (1) Every $s \in S$ with $s(M) \not\subset^e M$, s(M) is projective.

(2) Every factor module of a nonessential PM - injective module is nonessential PM - Injective.

(3) Every factor module of an injective R – module is nonessential PM - injective.

Proof. (1) \Rightarrow (2) Let N be a nonessential PM - injective module, X a submodule of N, $s \in S$ with $s(M) \not\subset^e M$, and $\varphi: s(M) \rightarrow N/X$ be an R – homomorphism. Then by (1), there exists an R – homomorphism $\hat{\varphi}: s(M) \rightarrow N$ such that $\varphi = \eta \hat{\varphi}$ where $\eta: N \rightarrow N/X$ is the natural R – epimorphism. Since N is nonessential PM - injective, there exists an R – homomorphism $t: M \rightarrow N$ which is an extension of $\hat{\varphi}$ to M. Then ηt is an extension of φ to M.

 $(2) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$ Let $s \in S$ with $s(M) \not\subset^{e} M$ and $\alpha : A \to B$ an R-epimorphism, and let $\varphi : s(M) \to B$ be an R-homomorphism. Embed A in an injective module E [1, 18.6]. Let $\sigma : B \to A / \text{Ker}(h)$ be an R-isomorphism. Since $E / \text{Ker}(\alpha)$ is nonessential PMinjective, there exists an R-homomorphism $\hat{\varphi} : M \to E / \text{Ker}(\alpha)$ such that $\iota_1 \sigma \varphi = \hat{\varphi} \iota_2$ where $\iota_1 : A / \text{Ker}(h) \to E / \text{Ker}(h)$ and $\iota_2 : s(M) \to M$ are the inclusion maps. Since M is projective, $\hat{\varphi}$ can be lifted to $\beta : M \to E$. Let $s(m) \in s(M)$.

S. Wongwai, N. Thiangtong, V. Pimonlsith and P. Pornpunpaibool

Then $\sigma \varphi(s(m)) = a + Ker(\alpha)$ for some $a \in A$, so

 $\beta(s(m)) + \text{Ker}(\alpha) = \eta\beta(s(m)) = \hat{\phi}(s(m)) = \sigma\phi(s(m)) = a + \text{Ker}(\alpha) \text{ where}$ $\eta: E \to E / \text{Ker}(\alpha) \text{ is the natural } R - \text{epimorphism. Hence } \beta(s(m)) - a \in \text{Ker}(\alpha) \subset A \text{ so}$ $\beta(s(m)) \in A$. This shows that $\beta(s(M)) \subset A$. Therefore we have lifted α .

3. Nonessential PQ - injective modules

A right R – module M is called *nonessential principally quasi- injective* (briefly, *nonessential* PQ - *injective*) if, it is *nonessential* PM - *injective*.

Lemma 3.1. Let M be a right R – module. Then the following conditions are equivalent.

(1) M is nonessential PQ-injective.

(2) $l_s(\text{Ker}(s)) = \text{Ss for each } s \in S \text{ with } s(M) \not\subset^e M.$

(3) $\operatorname{Ker}(s) \subset \operatorname{Ker}(t)$, $s, t \in S$ and $s(M) \not\subset^{e} M$ implies that $St \subset Ss$.

(4) $l_s(Im(t) \cap Ker(s)) = l_s(Im(t) + Ss \text{ for } s, t \in S \text{ with } st(M) \not\subset^e M.$

Proof. (1) \Rightarrow (2) Clearly, Ss \subset l_s(Ker(s)) for all s \in S with s(M) $\not\subset^{e}$ M. Let

 $t \in l_s(\text{Ker}(s))$ and define $\varphi: s(M) \to t(M)$ by $\varphi(s(m)) = t(m)$ for every $m \in M$. Then φ is well-defined because $\text{Ker}(s) \subset \text{Ker}(t)$. By (1), there exists an R – homomorphism $\hat{\varphi}: M \to M$ such that $\hat{\varphi}\iota_1 = \iota_2\varphi$ where $\iota_1: s(M) \to M$ and $\iota_2: t(M) \to M$ are the inclusion maps. Hence $t = \varphi s = \hat{\varphi} s \in Ss$.

(2) \Rightarrow (3) If Ker(s) \subset Ker(t), s, t \in S with s(M) $\not\subset^{e}$ M then

 $l_s(Ker(t)) \subset l_s(Ker(s))$. Since $St \subset l_s(Ker(t))$ and by (2) $l_s(Ker(s)) = Ss$, so we have $St \subset Ss$.

 $\begin{array}{ll} (3) \Rightarrow (4) \ \text{Clearly,} \ l_s(\text{Im}(t) + \text{Ss} \subset l_s(\text{Im}(t) \cap \text{Ker}(s)) \ \text{for s, } t \in S \ \text{with } st(M) \not\subset^e M. \\ \text{Let } \phi \in l_s(\text{Im}(t) \cap \text{Ker}(s)). \ \text{Then } \text{Ker}(st) \subset \text{Ker}(\phi t), \ \text{and so } S\phi t \subset \text{Sst } by \ (3) \ \text{because} \\ st(M) \not\subset^e M. \ \text{Thus } \phi t = \hat{\phi}st, \ \hat{\phi} \in S \ \text{so } (\phi - \hat{\phi}s) \in l_s(\text{Im}(t)). \ \text{It follows that} \\ \phi \in l_s(\text{Im}(t) + Ss. \end{array}$

(4) ⇒ (1) Let $s \in S$ with $s(M) \not\subset^e M$ and $\varphi : s(M) \to M$ be an R – homomorphism. Then $\varphi s \in l_s(\text{Ker}(\varphi s)) \subset l_s(\text{Ker}(s)) = l_s(\text{Ker}(s) \cap \text{Im} 1) = l_s(\text{Im} 1) + \text{Ss} = \text{Ss by (4)}$ because $s1(M) \not\subset^e M$. Thus there exists an R – homomorphism $\hat{\varphi} \in S$ is an extension of

φ to M.

Following [8], a right R – module M is called a *duo module* if every submodule of M is fully invariant.

Theorem 3.2. Let M be a duo, nonessential PQ-injective module and s, $t \in S$ with $s(M) \not\subset^{e} M$.

(1) If s(M) embeds into t(M), then Ss is an image of St.

(2) If t(M) is an image of s(M), then St can be embedded into Ss.

(3) If $s(M) \simeq t(M)$, then $Ss \simeq St$.

Nonessential PQ-injective modules

Proof. (1) Let $f: s(M) \rightarrow t(M)$ be an R-monomorphism. Since M is nonessential PQ - injective, there exists an R – homomorphism $\hat{f}: M \to M$ such that $\hat{f}\iota_1 = \iota_2 f$ where $\iota_1: s(M) \to M$ and $\iota_2: t(M) \to M$ are the inclusion maps. Let $\sigma: St \to Ss$ defined by $\sigma(ut) = u\hat{f}s$ for every $u \in S$. Since $\hat{f}s(M) \subset t(M)$, σ is well-defined. It is clear that σ is an S-homomorphism. Since $\hat{f}|_{s(M)}$ is monic and M is a duo module, $\hat{f}(s(M)) \subset s(M)$ so $fs(M) \not\subset^{e} M$. Since Ker(fs) \subset Ker(s), Ss \subset Sfs by Lemma 3.1. Then

 $s \in Sfs \subset \sigma(St)$.

(2) By the same notations as in (1), let $f: s(M) \rightarrow t(M)$ be an R-epimorphism.

Since M is nonessential PQ - injective, there exists an R – homomorphism $\hat{f}: M \to M$ such that $\hat{f}\iota_1 = \iota_2 f$. Let $\sigma: St \to Ss$ defined by $\sigma(ut) = u\hat{f}s$ for every $u \in S$. It is clear that σ is an S-homomorphism. If $ut \in Ker(\sigma)$, then $0 = \sigma(ut) = u\hat{fs} = ufs$. It follows that ut = 0.

(3) Follows from (1) and (2)

Recall that a right R -module M is called C2 [6] if, every submodule of M that is isomorphic to a direct summand of M is itself a direct summand of M. M is called C3 if whenever N and K are direct summands of M with $N \cap K = 0$ then $N \oplus K$ also a direct summand of M.

Theorem 3.3. Let M = mR, $m \in M$ be a principal, nonessential PQ - injective module.

- (1) If $nR \simeq e(mR)$ where $n \in M$ and $1 \neq e = e^2 \in S$, then nR = g(mR), for some $g = g^2 \in S.$
- (2) If $e(mR) \cap f(mR) = 0$, $1 \neq e = e^2 \in S$, $1 \neq f = f^2 \in S$, then $e(mR) \oplus f(mR) = g(mR)$, For some $g = g^2 \in S$.

Proof. (1) If $nR \simeq e(mR)$ where $n \in M$ and $1 \neq e = e^2 \in S$, then e(mR) is nonessential PM - injective by Lemma 2.4 and hence nR is also nonessential PM injective. Since $nR \simeq e(mR)$, there exists an isomorphism σ such that $nR \simeq \sigma e(mR)$.

Since $\sigma e(M) \not\subset^{e} M$, then $nR \subset^{\oplus} M$ Lemma 2.4.

(2) Let $e(mR) \cap f(mR) = 0$, $1 \neq e = e^2 \in S$, $1 \neq f = f^2 \in S$. Then

 $e(M) \oplus f(M) = e(M) \oplus (1-e)f(M)$. Since $(1-e)f(M) \simeq f(M)$,

(1-e)f(M) = g(M) for some $g^2 = g \in S$ by (1). Let h = e + g - ge, then $h^2 = h$ and $e(M) \oplus f(M) = h(M)$. This prove (2).

Theorem 3.4. Let M be a principal, nonessential PQ - injective, quasi-projective module and $s \in S$ with $s(M) \not\subset^{e} M$. Then the following conditions are equivalent. (1) s(M) is a direct summand of M.

(2) s(M) is M-projective.

(3) s(M) is nonessential PQ-injective.

Proof. (1) \Rightarrow (2) It follows from the projectivity of M.

S. Wongwai, N. Thiangtong, V. Pimonlsith and P. Pornpunpaibool

 $(2) \Rightarrow (3)$ Since the sequence $0 \rightarrow \text{Ker}(s) \rightarrow M \rightarrow s(M) \rightarrow 0$ splits, s(M) is isomorphic to a direct summand of M so it is nonessential PM - injective by Theorem 3.3 and Lemma 2.4.

 $(3) \Rightarrow (1)$ It follows from Lemma 2.4.

Definition 3.5. Let M be a right R -module, $S = End_{R}(M)$. The module M is called almost nonessential PQ - injective if, for each $s \in S$ with $s(M) \not\subset^{e} M$, there exists a left ideal X_s of S such that $l_S(r_M(s)) = Ss \oplus X_s$ as left S-modules.

Lemma 3.6. Let M be a right R -module, $S = End_{R}(M)$ and $s \in S$ with $s(M) \not\subset^{e} M$.

- (1) If $\operatorname{Hom}_{R}(s(M), M) = S \oplus Y$ as left S-modules, then $l_{S}(\operatorname{Ker}(s)) = Ss \oplus X$ as left S - modules, where $X = \{fs : f \in Y\}$.
- (2) If $l_s(Ker(s)) = Ss \oplus X$ for some $X \subset S$ as left S modules, then we have $\operatorname{Hom}_{R}(s(M), M) = S \oplus Y$ as left S - modules, where $\mathbf{Y} = \{ \mathbf{f} \in \operatorname{Hom}_{R}(\mathbf{s}(\mathbf{M}), \mathbf{M}) : \mathbf{fs} \in \mathbf{X} \}.$
- (3) Ss is a direct summand of $l_s(Ker(s))$ as left S modules if and only if S is a direct summand of $\operatorname{Hom}_{\mathbb{R}}(s(M), M)$ as left S - modules.

Proof. Define θ : Hom_R(s(M), M) \rightarrow l_s(Ker(s)) by θ (f) = fs for every $f \in Hom_{\mathbb{R}}(s(M), M)$ It is obvious that θ is an S-monomorphism. For $t \in l_s(Ker(s))$ define $g: s(M) \to M$ by g(s(m)) = t(m) for every $m \in M$. Since $Ker(s) \subset Ker(t)$, g is well-defined, so it is clear that g is an R -homomorphism. Then $\theta(g) = gs = t$. Therefore θ is an S-isomorphism. Let $fs \in Ss$. Since $fs \in l_s(Ker(s))$, there exists $\phi \in \operatorname{Hom}_{R}(s(M), M)$ such that $\theta(\phi) = fs$, so $\phi s = fs$. Define $\phi: M \to M$ by $\hat{\varphi}(m) = f(m)$ for every $m \in M$. It is clear that $\hat{\varphi}$ is an R -homomorphism and is an extension of φ . Then $fs = \hat{\varphi}s = \theta(\hat{\varphi})$. This shows that $Ss \subset \theta(S)$. The other inclusion is

Theorem 3.7. The following conditions are equivalent:

- (1) M is almost nonessential PQ-injective.
- (2) There exists an indexed set $\{X_s : s \in S\}$ of left ideals of S with the property that if $s(M) \not\subset^{e} M$, $s \in S$, then $l_{s}(Im(t) \cap Ker(s)) = (X_{st}:t)_{1} + Ss$ and $(X_{st}:t)_1 \cap Ss \subset l_s(t)$ for all $t \in S$, where $(X_{st}:t)_1 = \{g \in S: gt \in X_{st}\}$ if $st \neq 0$ and $(X_{st}:t)_1 = l_s(Im(t))$ if st = 0.

clear. Then $\theta(S) = Ss$ and $X = \theta(Y) = \{fs : f \in Y\}$. Then the Lemma follows.

Proof. (1) \Rightarrow (2) Let $s \in S$ with $s(M) \not\subset^{e} M$. Then there exists a left ideal X_{s} of S such that $l_s(\text{Ker}(s)) = Ss \oplus X_s$ as left S-modules. Let $t \in S$. If st = 0, then $Im(t) \subset Ker(s)$ so (2) follows. If $st \neq 0$, then any $g \in I_s(Im(t) \cap Ker(s))$ we have $\operatorname{Ker}(\operatorname{st}) \subset \operatorname{Ker}(\operatorname{gt})$ and so $\operatorname{gt} \in l_{\operatorname{S}}(\operatorname{Ker}(\operatorname{gt})) \subset l_{\operatorname{S}}(\operatorname{Ker}(\operatorname{st})) = \operatorname{Sst} \oplus X_{\operatorname{st}}$ as left S-modules because st(M) $\not\subset^{e}$ M. Write gt = $\alpha(st) + h$ where $\alpha \in S$ and $h \in X_{st}$. Then

Nonessential PQ-injective modules

 $(g - \alpha(s))t = h \in X_{st}$, so $g - \alpha s \in (X_{st} : t)_1$ It follows that $g \in (X_{st} : t)_1 + Ss$. This shows that $l_S(Ker(s) \cap Im(t)) \subset (X_{st} : t)_1 + Ss$. Conversely, it is clear that $Ss \subset l_S(Ker(s) \cap Im(t))$. Let $h \in (X_{st} : t)_1$. Then $ht \in X_{st} \subset l_S(Ker(st))$. If $t(m) \in Ker(s) \cap Im(t)$, then st(m) = 0 and so ht(m) = 0. Hence $h \in l_S(Ker(s) \cap Im(t))$. This shows that $(X_{st} : t)_1 \subset l_S(Ker(st))$. Therefore $l_s(Ker(s) \cap Im(t)) = (X_{st} : t)_1 + Ss$. If $\beta s \in (X_{st} : t)_1 \cap Ss$, then $\beta st \in X_{st} \cap Sst = 0$. Hence $\beta s \in l_S(t)$. $(2) \Rightarrow (1)$ Let $s \in S$ with $s(M) \not\subset^e M$. Then there exists a left ideal X_S of S such that

 $l_{s}(\text{Ker}(s)) = l_{s}(\text{Ker}(s) \cap \text{Im}(1)) = (X_{s}:1)_{1} + \text{Ss and } (X_{s}:1)_{1} \cap \text{Ss} \subset l_{s}(1) = 0.$ Note that $(X_{s}:1)_{1} = X_{s}$. Then (1) follows.

References

- [1] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules", Graduate Texts in Math.No.13 ,Springer-verlag, New York, 1992.
- [2] Camillo V., *Commutative rings whose principal ideals are annihilators*, Portugal. Math., 46(1989), p. 33-37.
- [3] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, "Extending Modules", Pitman, London, 1994.
- [4] T. Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics Vol. 131, Springer-Verlag, New York, 1991.
- [5] W. Junchao, *JCP-INJECTIVE RINGS* International Electronic Journal of Algebra Volume 6 (2009) 1-22.
- [6] S. H. Mohamed and B. J. Muller, "Continuous and Discrete Modules", London Math. Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
- [7] W. K. Nicholson and M. F. Yousif, *Principally injective rings*, J. Algebra, 174(1995), 77--93.
- [8] W. K. Nicholson, J. K. Park and M. F. Yousif, *Principally quasi-injective modules*, Comm. Algebra, 27:4(1999),1683--1693.
- [9] R. Wisbauer, "Foundations of Module and Ring Theory", Gordon and Breach London, Tokyo e.a., 1991.
- [10] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenianae, Vol.71,1(2002), pp. 27-33.
- [11] S. Wongwai, *Almost Mininjective Rings*, Thai Journal of Mathematics, 4(1) (2006), 245-249
- [12] S. Wongwai, *Small Principally Quasi-injective modules*, Int. J. Contemp. Math. Sciences, Vol.6, 2011, no. 11, 527-534.