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Abstract :  Let  M  be a right R −module.  A right R −module N  is called  nonessential 
principally M - injective (briefly, nonessential PM - injective) if, for each  s S∈  with 

es(M) M,⊄  any  R − homomorphism from s(M)  to N  can be extended to an 
R − homomorphism from M  to N.  M  is called nonessential principally quasi- injective  
(briefly, nonessential PQ - injective) if, it is nonessential PM - injective.  In this paper,  
we give some characterizations and properties of  nonessential PQ - injective modules. 
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1.  Introduction 
 

Let R  be a ring.  A right  R -module  M  is called principally injective  
(or P -injective) [8], if every R -homomorphism from a principal right ideal of R to 
M can be extended to an R -homomorphism from R to M.  Equivalently, M Rl r (a) Ma=  
for all a R∈  where l  and r are left and right annihilators, respectively.  In  [9], 
Nicholson, Park, and Yousif extended this notion of  principally injective rings to the one 
for modules.  In [5],  W. Junchao introduced the definition of   Jcp -injective rings , a ring  
R is called right  Jcp -injective if for each  \ ,ra R Z∈  any  R -homomorphism from  aR  
to  R  can be extended to an R -homomorphism from R to R.  A right R -module M  is 
called almost  mininjective [11]  if,  for any simple right ideal kR  of R ,  there exists an 
S -submodule kX  of M  such that M R kl (r (m)) Mk X= ⊕   as left S -modules.  A ring 
R is called right almost  mininjective if  RR  is  almost  mininjective.  In this note we 
introduce the definition of  nonessential PQ - injective modules  and give some 
characterizations and properties. Some important  results which are known for  P -
injective rings  are hold for  nonessential PQ - injective modules.  

 
Throughout this paper, R  will be an associative ring with identity and all 

modules are unitary right R −modules.  For right R −modules M  and N,  RHom (M, N)  
denotes the set of all R − homomorphisms from M  to N  and  RS End (M)=  denotes the 
endomorphism ring of M.   If X  is a subset of M  the right (resp. left) annihilator of X  
in R  (resp. S ) is denoted by Rr (X)   (resp. Sl (X) ).  By notation, N M⊕⊂  e(N M)⊂  we 
mean that N  is a direct summand  ( an essential submodule)  of M.  We denote the 
singular submodule of  M  by Z(M).   
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2.  Nonessential PM - injective modules 

Recall that a submodule  K of a right R −module M  is essential (or large) in M  
if, every nonzero submodule  L of M , we have K L 0.∩ ≠  An element  m M∈  is called 
singular if e

Rr (m) R.⊂  M  is called nonsingular if it contains no nontrivial singular 
element. 
 
Definition 2.1.  Let  M  be a right R −module.  A right R −module N  is called  
nonessential principally M - injective (briefly, nonessential PM - injective) if, for each  
s S∈  with es(M) M,⊄  any  R − homomorphism from s(M)  to N  can be extended to an 
R − homomorphism from M  to N. . 
 

Example  2.2.  Let  
F F

R
0 F
 

=  
 

 where F  is a field, R RM R=  and  R

F F
N

0 0
 

=  
 

, then 

N  is  nonessential PM - injective.   

Proof.   It is clear that only 1

0 F
X ,

0 0
 

=  
 

 2

0 0
X

0 F
 

=  
 

  and  3X N=  are nonzero 

nonessential endomorphism  images  of RM . Let  1: X Nϕ →  be an R − homomorphism.  

Since 1

0 1
X

0 0
 

∈ 
 

,  there exists 11 12x , x F∈  such that    11 120 1 x x
0 0 0 0

    
ϕ =    

    
.      

Then      
0 1 0 1 0 0
0 0 0 0 0 1

        
ϕ = ϕ        

        
  11 12 12x x 0 0 0 x

0 0 0 1 0 0
    

= =    
    

 . 

It follows that    11x 0= . 

Define   : M Nϕ →  by   121 0 x 0
( ) .

0 1 0 0
   

ϕ =   
   

 It is clear that ϕ  is an 

R − homomorphism.  

Then   

12 120 1 1 0 0 1 x 0 0 1 0 x
.

0 0 0 1 0 0 0 0 0 0 0 0
             

ϕ = ϕ = =             
             

 

This show that  ϕ  is an  extension of  ϕ . By the similar proof  of 1X ,  we can show for 

2X  and it is clear for 3X . Then N  is  nonessential PM - injective.                                 
 
Lemma 2.3.   Let M and N  be a right R −modules.  Then N  is  nonessential PM - 
injective  if and only if for each  s S∈  with es(M) M,⊄  
                                  }{R RHom (M, N)s f Hom (M, N) : f (Ker(s)) 0 .= ∈ =  

 Proof.   Clearly, }{R RHom (M, N)s f Hom (M, N) : f (Ker(s)) 0 .⊂ ∈ =   
 Let Rf Hom (M, N)∈  such that  f (Ker(s)) 0.=  Then there exists an R − homomorphism  

: s(M) Nϕ →  such that  s fϕ =  by  Factor Theorem  
because Ker(s) Ker(f ).⊂  Since N  is nonessential PM - injective , there exists an 
R − homomorphism t : M N→   such that tϕ = ι   where  : s(M) Mι →  is the inclusion 
map. Hence f ts=  and therefore  Rf Hom (M, N)s.∈  
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 Conversely, let s S∈  with es(M) M⊄  and : s(M) Nϕ →  be an 
R − homomorphism. Then  Rs Hom (M, N)ϕ ∈  and s(Ker(s)) 0.ϕ =  By assumption, we 
have  s usϕ =  for some  Ru Hom (M, N).∈  This shows that N  is nonessential PM - 
injective.                                                                                                                              
 

Lemma 2.4.   
(1)  If  iN   (1 i n)≤ ≤  are  nonessential PM - injective modules, then    n

i 1 iN=⊕  is  
       nonessential PM - injective. 
(2)   Any direct summand of a nonessential PM - injective module is again   
        nonessential PM - injective. 
(3)  If s S∈  with es(M) M⊄  and   s(M)  is  nonessential PM - injective, then   
         s(M) M.⊕⊂   
Proof.  (1)  It is enough to prove the result for  n 2.=  Let s S∈  with es(M) M⊄  and  

1 2: s(M) N Nϕ → ⊕  be an R − homomorphism. Since 1N  and  2N   are nonessential 
PM - injective, there exists  R − homomorphisms 1 1: M Nϕ →  and  2 2: M Nϕ →   such 
that 1 1ϕ ι = π ϕ  and  2 2ϕ ι = π ϕ   where  1π  and 2π  are the projection maps from  1 2N N⊕  
to 1N  and  2N ,  respectively, and  : s(M) Mι →  is the inclusion map. Put   

1 1 2 2 1 2ˆ : M N N .ϕ = ι ϕ + ι ϕ → ⊕   Thus it is clear that   ϕ̂   extends  .ϕ                                                        
(2)  By definition. 
(3)  Since s(M)  is  nonessential PM - injective, there exists an R − homomorphism 

: M s(M)ϕ →  such that  s(M)1ϕι =   where  : s(M) Mι →  is the inclusion map. Then by 

 [1, Lemma 5.1] ,  ι  is a split monomorphism, therefore  s(M) M.⊕⊂                            
 
Theorem  2.5.  The following conditions are equivalent for a projective  modules M.  
(1)  Every  s S∈  with es(M) M,⊄  s(M)  is projective.  
(2)  Every factor module of a nonessential PM - injective module is nonessential PM -
Injective. 
(3)  Every factor module of an injective R −module is nonessential PM - injective. 
Proof.   (1) (2)⇒   Let  N   be a nonessential PM - injective module, X  a submodule of 
N ,  s S∈  with es(M) M,⊄   and  : s(M) N / Xϕ →  be an R − homomorphism. Then by 
(1), there exists an R − homomorphism ˆ : s(M) Nϕ →  such that  ˆϕ = ηϕ   where  

: N N / Xη →  is the natural R − epimorphism. Since  N  is nonessential PM - injective, 
there exists an R − homomorphism t : M N→  which is an extension of  ϕ̂  to M.  Then 

tη  is an extension of  ϕ  to M.  
(2) (3)⇒  is clear. 
(3) (1)⇒  Let s S∈  with es(M) M⊄    and  : A Bα →  an R − epimorphism, and let  

: s(M) Bϕ →  be an R − homomorphism. Embed A in an injective module E  [1, 18.6]. 
Let : B A / Ker(h)σ →  be an R − isomorphism. Since E / Ker( )α  is nonessential PM - 

injective, there exists an R − homomorphism  : M E / Ker( )ϕ → α  such that  

1 2ι σϕ = ϕι  
where  1 : A / Ker(h) E / Ker(h)ι →  and 2 : s(M) Mι →  are the inclusion maps. Since  M  

is projective, ϕ  can be lifted to  : M E.β →  Let  s(m) s(M).∈   
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Then (s(m)) a Ker( )σϕ = + α for some a A,∈  so  
(s(m)) Ker( ) (s(m)) (s(m)) (s(m)) a Ker( )β + α = ηβ = ϕ = σϕ = + α  where  

: E E / Ker( )η → α  is the natural  R − epimorphism. Hence  (s(m)) a Ker( ) Aβ − ∈ α ⊂  so 
(s(m)) A.β ∈   This shows that (s(M)) A.β ⊂  Therefore we have lifted .α                         

 

3.  Nonessential PQ - injective modules 
A right  R −module M  is called nonessential principally quasi- injective  

(briefly, nonessential PQ - injective) if, it is nonessential PM - injective.   
 
Lemma 3.1.  Let M  be a right R −module.  Then the following conditions are 
equivalent. 
(1)  M  is nonessential PQ - injective.    
(2)   Sl (Ker(s)) Ss=  for each s S∈  with es(M) M.⊄     
(3)   Ker(s) Ker(t),⊂  s, t S∈  and es(M) M⊄      implies that  St Ss.⊂  
(4)   S Sl (Im(t) Ker(s)) l (Im(t) Ss∩ = +  for  s, t S∈   with est(M) M.⊄     
Proof.   (1) (2)⇒  Clearly,  SSs l (Ker(s))⊂  for all s S∈  with es(M) M.⊄   Let 

St l (Ker(s))∈   and define : s(M) t(M)ϕ →   by (s(m)) t(m)ϕ =  for every m M.∈  Then 
ϕ  is well-defined because Ker(s) Ker(t).⊂  By (1), there exists an R − homomorphism 
ˆ : M Mϕ →  such that 1 2ϕ̂ι = ι ϕ  where 1 : s(M) Mι →  and 2 : t(M) Mι →  are the 

inclusion maps.  Hence  ˆt s s Ss.= ϕ = ϕ ∈  
(2) (3)⇒  If  Ker(s) Ker(t),⊂  s, t S∈  with es(M) M⊄     then 

S Sl (Ker(t)) l (Ker(s)).⊂  Since SSt l (Ker(t))⊂  and by (2)  Sl (Ker(s)) Ss,=  so we 
have St Ss.⊂  
(3) (4)⇒  Clearly,  S Sl (Im(t) Ss l (Im(t) Ker(s))+ ⊂ ∩  for  s, t S∈   with  est(M) M.⊄  
Let  Sl (Im(t) Ker(s)).ϕ∈ ∩ Then Ker(st) Ker( t),⊂ ϕ  and so S t Sstϕ ⊂   by (3)  because 

est(M) M.⊄  Thus ˆt st,ϕ = ϕ  ˆ Sϕ∈  so Sˆ( s) l (Im(t)).ϕ−ϕ ∈  It follows that 

Sl (Im(t) Ss.ϕ∈ +  
(4) (1)⇒  Let  s S∈  with es(M) M⊄  and : s(M) Mϕ →  be an R − homomorphism. 
Then S S S Ss l (Ker( s)) l (Ker(s)) l (Ker(s) Im1) l (Im1) Ss Ssϕ ∈ ϕ ⊂ = ∩ = + =  by  (4)  
because  es1(M) M.⊄  Thus  there exists an R − homomorphism ˆ Sϕ∈   is an extension of  
ϕ  to M.                                                                                                                                       
                                                                    
           Following [8], a right R −module  M  is called a duo module if every submodule 
of M  is fully invariant.                      
                                                                                       
Theorem  3.2.  Let M  be a duo, nonessential PQ - injective module and s, t S∈   with  

es(M) M.⊄  
(1)  If  s(M)  embeds into  t(M),  then  Ss is an image of  St.  
(2)  If  t(M)  is an image of  s(M),  then  St  can be embedded into Ss.  
(3)  If  s(M) t(M),  then  Ss St.  
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Proof.   (1)   Let   f : s(M) t(M)→  be an R −monomorphism.  Since M  is nonessential 
PQ - injective, there exists an R − homomorphism f : M M→  such that 1 2f fι = ι  where 

1 : s(M) Mι →  and 2 : t(M) Mι →  are the inclusion maps. Let :St Ssσ →   defined by 

(ut) ufsσ =   for every u S∈ .  Since fs(M) t(M)⊂ , σ  is well-defined.  It is clear that σ  
is an S− homomorphism.   Since s(M)f̂  is monic and M  is a duo module, 

f̂ (s(M)) s(M)⊂  so efs(M) M.⊄  Since Ker(fs) Ker(s)⊂ , Ss Sfs⊂  by Lemma 3.1.  Then 
s Sfs (St)∈ ⊂ σ . 
(2)  By the same notations as in (1), let   f : s(M) t(M)→  be an R − epimorphism.   
Since M  is nonessential PQ - injective, there exists an R − homomorphism f : M M→  

such that 1 2f f .ι = ι Let :St Ssσ →   defined by (ut) ufsσ =   for every u S∈ .  It is clear 

that σ  is an S− homomorphism.  If  ut Ker( )∈ σ , then ˆ0 (ut) ufs ufs.= σ = =  It follows 
that ut 0.=  
(3)   Follows from (1) and (2)                                                                                            
 

Recall that a right  R -module  M  is called C2  [6]  if, every submodule of  M  
that is isomorphic to a direct summand of  M  is itself a direct summand of  M.  M  is 
called C3  if whenever N  and  K  are  direct summands of  M  with N K 0∩ =  then 
N K⊕  also  a direct summand of  M.   

 
Theorem 3.3.  Let  M mR,=  m M∈  be a principal,  nonessential PQ - injective module.  
(1)   If  nR e(mR)  where n M∈  and 21 e e S,≠ = ∈  then nR g(mR),=  for some  
        2g g S.= ∈  
(2)   If  e(mR) f (mR) 0,∩ = 2 21 e e S, 1 f f S,≠ = ∈ ≠ = ∈  then e(mR) f (mR) g(mR),⊕ =  
         For some  2g g S.= ∈  
Proof.   (1)   If nR e(mR)  where n M∈  and 21 e e S,≠ = ∈  then  e(mR)  is  
nonessential PM - injective by Lemma 2.4  and hence  nR  is  also nonessential PM - 
injective. Since nR e(mR) , there exists an isomorphism σ  such that  nR e(mR).σ  
Since ee(M) M,σ ⊄    then nR M⊕⊂  Lemma 2.4.   
(2)   Let e(mR) f (mR) 0,∩ =  

2 21 e e S, 1 f f S.≠ = ∈ ≠ = ∈  Then 
e(M) f (M) e(M) (1 e)f (M).⊕ = ⊕ −  Since (1 e)f (M) f (M),−   
(1 e)f (M) g(M)− =  for some  2g g S= ∈   by (1).  Let h e g ge,= + −  then 2h h=  and 
e(M) f (M) h(M).⊕ =  This prove (2).                                                                          
 
Theorem  3.4.  Let M  be a principal, nonessential PQ - injective, quasi-projective 
module and s S∈  with es(M) M.⊄    Then the following conditions are equivalent. 
(1)  s(M)  is a direct summand of M.  
(2)  s(M)  is M −projective. 
(3)  s(M)  is  nonessential PQ - injective. 
Proof.   (1) (2)⇒  It follows from the projectivity of M.  
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(2) (3)⇒ Since the sequence 0 Ker(s) M s(M) 0→ → → →  splits, s(M) is isomorphic  
to a direct summand of M  so it is nonessential PM - injective by Theorem 3.3 and 
Lemma 2.4.   
(3) (1)⇒  It follows from Lemma 2.4.                                                                               
 

Definition 3.5.  Let  M  be a right R -module, RS End (M)= .  The module M  is called 
almost nonessential PQ - injective  if, for each s S∈  with es(M) M,⊄  there exists  a left 
ideal sX  of S   such that  S M sl (r (s)) Ss X= ⊕  as left S -modules. 
 

Lemma 3.6.  Let M  be a right R -module,  RS End (M)=  and s S∈  with es(M) M.⊄  
(1)   If  RHom (s(M),M) S Y= ⊕  as left S -modules,  then  Sl (Ker(s)) Ss X= ⊕  as  
        left  S - modules,  where   { }X fs : f Y .= ∈  
(2)   If   Sl (Ker(s)) Ss X= ⊕   for some  X S⊂   as left  S - modules,  then we have  
        RHom (s(M),M) S Y= ⊕  as left  S - modules,  where   
        { }RY f Hom (s(M),M) : fs X .= ∈ ∈  
(3)   Ss  is a direct summand of  Sl (Ker(s))  as left  S - modules if and only if  S  is a  
        direct  summand of  RHom (s(M),M)  as left  S - modules. 
Proof.   Define  R S: Hom (s(M),M) l (Ker(s))θ →  by (f ) fsθ =  for every  

Rf Hom (s(M),M)∈  It is obvious that θ  is an S -monomorphism.  For  St l (Ker(s))∈  
define  g : s(M) M→  by  g(s(m)) t(m)=  for every  m M.∈  Since Ker(s) Ker(t),⊂ g  is 
well-defined, so it is clear that  g  is an R -homomorphism.  Then (g) gs t.θ = =  
Therefore  θ  is an S -isomorphism. Let fs Ss.∈  Since Sfs l (Ker(s)),∈  there  exists 

RHom (s(M),M)ϕ∈  such that ( ) fs,θ ϕ =  so s fs.ϕ =  Define   : M Mϕ →  by  
(m) f (m)ϕ =  for every  m M.∈  It is clear that  ϕ  is an R -homomorphism and is an 

extension of .ϕ  Then   fs s ( ).= ϕ = θ ϕ This shows that Ss (S).⊂ θ The other inclusion is 
clear. Then (S) Ssθ = and { }X (Y) fs : f Y .= θ = ∈  Then the Lemma follows.                                                                                         
 

Theorem  3.7.  The following conditions are equivalent: 
(1)  M  is  almost nonessential PQ - injective.   
(2)  There exists an indexed  set  { }sX : s S∈  of  left ideals of S  with the property  

       that  if  es(M) M,⊄  s S,∈  then S st ll (Im(t) Ker(s)) (X : t) Ss∩ = +  and   
       st l S(X : t) Ss l (t)∩ ⊂  for all  t S,∈ where  { }st l st(X : t) g S : gt X= ∈ ∈  if   
        st 0≠  and  st l S(X : t) l (Im(t))=  if  st 0.=     
Proof.   (1) (2)⇒  Let s S∈  with es(M) M.⊄  Then there exists  a left ideal sX  of  S    
such that S sl (Ker(s)) Ss X= ⊕   as left S -modules.  Let t S.∈  If  st 0,= then 
Im(t) Ker(s)⊂   so (2)  follows.  If   st 0,≠ then any  Sg l (Im(t) Ker(s))∈ ∩  we have  
Ker(st) Ker(gt)⊂  and so  S S stgt l (Ker(gt)) l (Ker(st)) Sst X∈ ⊂ = ⊕  as left S -modules  
because est(M) M.⊄  Write gt (st) h= α +   where  Sα∈  and sth X .∈  Then   
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st(g (s))t h X ,−α = ∈  so st lg s (X : t)−α ∈  It follows  that  st lg (X : t) Ss.∈ +  This shows 
that Sl (Ker(s) Im(t))∩ ⊂ st l(X : t) Ss.+   Conversely, it is clear that  

SSs l (Ker(s) Im(t)).⊂ ∩  Let  st lh (X : t) .∈  Then 

st Sht X l (Ker(st)).∈ ⊂  If  t(m) Ker(s) Im(t),∈ ∩  then st(m) 0= and  so  ht(m) 0.=  
Hence  Sh l (Ker(s) Im(t)).∈ ∩ This shows that st l(X : t) ⊂ Sl (Ker(st)). Therefore  

sl (Ker(s) Im(t))∩ = st l(X : t) Ss.+  If  st ls (X : t) Ss,β ∈ ∩  then  stst X Sst 0.β ∈ ∩ =  Hence 

Ss l (t).β ∈  
(2) (1)⇒  Let s S∈  with es(M) M.⊄  Then there exists a left ideal  SX  of  S   such that  

S S s ll (Ker(s)) l (Ker(s) Im(1)) (X :1) Ss= ∩ = +  and  s l S(X :1) Ss l (1) 0.∩ ⊂ =  
Note that s l s(X :1) X .=  Then  (1) follows.                                                                       
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