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ABSTRACT 

Background: The onset of diabetes is associated with the development of biochemical and functional 
abnormalities, including oxidative stress and apoptosis in the liver. Telfairia occidentalis (TO) is a popular 
plant and food item reported to have high of antioxidant, anti-inflammatory, immunomodulatory and 
hypoglycemic properties. The present study investigated the potential antihepatotoxic properties of T. 
occidentalis in animal model of diabetes- induced liver damage. 

Methods:  

Thirty-five rats were assigned into five groups of Seven (7) animals each.  Group 1 (Normal control) received 
0.5ml distilled water for 28 days, Group 2 (Diabetic control) received 10% fructose (w/v) for 14 days prior to 
single intra-peritoneal injection of 40mg/kg body weight streptozotocin (STZ), Group 3 (TO1 group), received 
10% fructose (w/v) for 14 days prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed 
by treatment with 200mg/kg body weight TO for 28 days, Group 4 (TO2 group) received 10% fructose (w/v)  for 
14 days prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed by treatment with 
300mg/kg body weight TO for 28 days, while Group 5 (MET group) received 10% fructose (w/v)  for 14 days 
prior to single intra-peritoneal injection of 40mg/kg body weight STZ, followed by treatment with 300mg/kg 
body weight Metformin for 28 days. 
 

Results: Treatment with TO at 200mg/kg and 300mg/kg significantly (p<0.05) augmented the activities of 
superoxide dismutase, catalase an glutathione peroxidase as well as reduced glutathione level with a 
concomitant decrease in malondialdehyde level in the liver of diabetic rats. Also, Inflammatory biomarkers 
namely TNF-α, IL-1β, NO and iNOS levels along with MPO and COX-2 activities were significantly decreased 
in the liver of diabetic rats when treated with T. occidentalis (200mg/kg and 300mg/kg). Furthermore, the 
activity of caspase-3 was markedly reduced in the liver of diabetic rats when treated with T. occidentalis 
(200mg/kg and 300mg/kg). 

Conclusion: Telfairia occidentalis attenuated oxidative stress, inflammation and activation of caspase-3 in the 
liver of streptozotocin-induced diabetic rats via antioxidant and anti-inflammatory mechanisms.  
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INTRODUCTION 

Diabetes is a lifelong chronic disease, which is one of the most severe endocrine metabolic disorders 
worldwide.[1] This common metabolic disease can result in severe structural and functional complications in the 
liver.[2][3] In addition to unfavourable effects on many tissues and organs, it has been suggested that diabetes 
mellitus also adversely affects hepatobiliary functions in diabetic patients and animals. Further, it is reported 
that hepatobiliary disorders such as hepatic inflammation, non-alcoholic fatty liver disease, nonalcoholic 
steatohepatitis, hemochromatosis, autoimmune hepatitis, cirrhosis, hepatocellular carcinoma, acute liver failure, 
and cholelithiasis can ensue under diabetes.[2][3][4] Although the liver is a central organ in metabolism and has 
been recognized to be injured in this disease,[5] the hepatic damage and dysfunction in diabetes have not been 
well addressed.[6] 

The onset of diabetes in the liver is associated with the development of biochemical and functional 
abnormalities, including oxidative stress and apoptosis.[7][8] In addition, inflammation and necrosis or fibrosis of 
non-alcoholic fatty liver disease has been reported to follow diabetes.[9] Madar et al. have also found that STZ-
induced diabetes increased iNOS activity in the rat liver and in the isolated hepatocytes.[10] Taurino et al. have 
found that the diabetic liver presents abnormalities in the 14-3-3 proteins, which constitute a family of 
conserved molecular chaperones with roles in the regulation of metabolism, signal transduction, cell cycle 
control, protein trafficking and apoptosis.[11]  

Nowadays, medicinal plants have received attention in the management of diabetes because they offer some 
hope and have less side-effects than the conventional medications.[12] A recent study has shown that higher 
habitual flavonoid intake from fruits and vegetables during adolescence is relevant for the prevention of risk 
factors of type 2 diabetes in early adulthood.[13] 

Telfairia occidentalis (TO), routinely referred to as fluted pumpkin, fluted gourd and “Ugu,” is a popular plant 
and food item amongst the populace in Nigeria due to its consumable seeds and edible leaf. It is an integral part 
of folkloric medicine in Nigeria[14][15] The seeds are rich in phytosterols, phytochemicals, sterols, 
polyunsaturated fatty acids, tocopherol, carotenoids and proteins.[16] Flavonoids, alkaloids, saponins, phenolics, 
anthraquinones and tannins were also found in methanolic seed extract of TO.[17]  

T. occidentalis has been reported to possess antioxidant effect, antiplasmodial and antibacterial effects, 
antianaemic and antidiabetic effects, immunodulatory, anticancer and antiinflammatory effects, hepatoprotective 
effects and male fertility activity.[18] 

More so, it has been opined that bioactive constituents of TO can trigger varied physiological, biochemical and 
morphological effects, [19] and this may account for the divergent influence of TO in experimental models. For 
instance, Nwidu and Oboma recently reported that T. occidentalis (Cucurbitaceae) pulp extract mitigated 
rifampicin-isoniazid-induced hepatotoxicity in an in vivo rat model of oxidative stress.[20] Also, Oladele et al 
demonstrated that T. occidentalis mitigated dextran sodium sulfate- induced ulcerative colitis in rats via 
suppression of oxidative stress, lipid peroxidation, and inflammation.[21] Hence this study investigated the 
potential antihepatotoxic properties of T. occidentalis in animal model of streptozotocin diabetes- induced liver 
damage. 

MATERIALS AND METHODS 

Chemicals  
Streptozotocin was procured from Sigma Aldrich, St Louis, USA. Interleukin-1β (IL-1β), Cyclooxygenase-2 
(COX-2), Caspase-3 and Inducible nitric oxide synthase (iNOS) kits were purchase from CUSABIO Life 
Science Inc. (Wuhan, China). All other reagents and kits were obtained from the British Drug Houses (Poole, 
Dorset, UK) and Randox USA.  
 
Preparation of Plant Extract 
Telfaria occidentalis (TO) leaves were harvested from a local farm in Okuku, Cross River State, Nigeria. The 
botanical identification of the plant was carried out at the herbarium of the Department of Botany, University of 
Ibadan.  The TO leaves were air-dried and grinded using an electronic blender. TO leaves were soaked in 
absolute ethanol (1:3) for 72 hours and filtered with Whatman paper size 1 and the filtrate was then concentrated 
at 40ºC.  
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Animal Model 
Thirty-five (35) male albino rats Wistar strain weighing about 100-250g were obtained from the animal holding 
facility of the Faculty of Basic Medical Sciences, University of Cross River state. They were placed in well 
ventilated wire netted plastic cages of five groups containing seven rats each. The rats were acclimatized for 14 
days before the commencement of study and were allowed access to rodent chow and drinking water ad libitum. 
All the rats received humane care according to the criteria outlined in the ‘Guide for the Care and Use of 
Laboratory Animals’ prepared by the National Academy of Science (NAS) and published by the National 
Institute of Health. The experiment was performed according to the US NAS guidelines and approval of 
institutional animal ethics committee. 
 
 
Experimental Design 
The rats were randomly assigned into 5 groups of 7 rats each. The treatment regimen is as described below  
Group 1: Served as control and received distilled water for 42 days  
 
Group 2: Served as the diabetes group and received 10% fructose for 14 days prior to single administration 
streptozotocin (STZ) 40mg/kg    
 
Group 3: Served as the TO1 group and received 10% fructose for 14 days prior to single administration of 
streptozotocin (STZ) 40mg/kg followed by treatment with 200mg/kg body weight TO for 28 days  
 
Group 4: Served as the TO2 group and received 10% fructose for 14 days prior to single administration of 
streptozotocin (STZ) 40mg/kg followed by treatment with 300mg/kg body weight TO for 28 days  
 
Group 5: Served as the MET group and received 10% fructose for 14 days prior to single administration of 
streptozotocin (STZ) 40mg/kg, followed by treatment with 300mg/kg body weight Metformin for 28 days.  
 
Animal Sacrifice and Preparation of Post Mitochondrial Fraction of Liver Homogenate 
All rats were sacrificed 24 hours after the last treatment. The blood was collected via cardio-puncture into 
EDTA bottles and centrifuged at 3000 RPM for 15mins to obtain the plasma. The liver was excised, rinsed in 
1.15% potassium chloride and homogenized in 0.1 M phosphate buffer (pH 7.4). The resulting homogenates 
were then centrifuged at 10,000g at 4oC for 10 minutes, to obtain the post mitochondria fraction that was used 
for the biochemical assay. 
 
Determination of Alanine aminotransferase, Aspartate aminotransferase and Alkaline Phosphatase  
 Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and Alkaline Phosphatase (ALP) were 
determined in the plasma as described in the manufacturer’s protocol Randox laboratories limited, USA. 
 
Determination of Biomarkers of Hepatic Oxidative stress  
The post mitochondrial fraction of the liver was collected for the estimation of catalase (CAT) activity using 
hydrogen peroxide as substrate according to the method of Clairborne.[22] Hydrogen peroxide generation was 
assessed by the method of Wolff.[23] Glutathione peroxidase (GPx) activity was determined by the method of 
Rotruck.[24] Superoxide dismutase (SOD) was assayed by the method described by Misra and Fridovich.[25] 
Myeloperoxidase (MPO) activity was determined according to the method of Granell et al.[26] MPO activity was 
expressed as umoleH2O2/min/mg protein. Lipid peroxidation was quantified as malondialdehyde (MDA) 
according to the method described by Farombi et al.[27] and expressed as micromoles of MDA per gram tissue. 
Nitric oxide (NO) level was evaluated by measuring the colonic nitrites content, the stable end products of nitric 
oxide (NO). Colonic nitrites content was obtained using a sodium nitrite curve as standard and expressed as 
μ m of nitrites/mg protein.[28] 

 
Determination of Renal Inflammatory and Apoptotic Biomarkers  
Caspase-3, TNF-α, IL-1β, iNOS and COX-2 concentrations in the supernatant of the liver homogenate were 
measured by ELISA kits according to the manufacturers’ instruction. (CUSABIO Life Science Inc., Wuhan, 
China). 
Histological Assessment  

The liver was excised washed in phosphate-buffered saline, and fixed with 10% formalin overnight. Evaluation 
of liver histological architecture was done by staining with hematoxylin and eosin. Mounted slides were 
examined under a light microscope  
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RESULTS 

Effects of T. occidentalis on AST, ALT and ALP in the plasma of STZ-induced diabetes in Rats  

As shown in Table 1: There was an increase in the activities of AST, ALT and ALP in the plasma of diabetic 
rats as compared to control (P< 0.05). However, treatment with T. occidentalis (200mg/kg and 300mg/kg) 
significantly decreased the activities of AST, ALT and ALP when compared with diabetic rats. Also, a similar 
trend was observed with metformin (300mg/kg) when compared with diabetic rats. 

Table 1: Effects of T. occidentalis on AST, ALT and ALP in the plasma of STZ-induced diabetes in Rats 

Data is expressed as mean ± SEM; n = 7 rats, * p< 0.05 against control, # p< 0.05 against STZ, a p< 0.05 
against MET. 

Effects of T. occidentalis on liver antioxidant status and oxidative stress in STZ-induced diabetes 

The result in figure 1 revealed that treatment of rats to streptozotocin caused a significant decrease (P< 0.05) in 
SOD, CAT, GST and GPx activities as well as GSH level with a concomitant increase in MDA level in the liver 
of diabetic rats when compared to control. However, treatment with T. occidentalis (200mg/kg and 300mg/kg) 
significantly improved the activities of these enzymes as well as decreased the level of MDA when compared 
with rats exposed to STZ alone. Also, treatment with metformin (300mg/kg) also showed similar trend with T. 
occidentalis group when compared with rats exposed to STZ alone. 

 

 

Figure 1: Effect of T. occidentalis (TO) on activities of SOD, GSH, GST, GPx, CAT and MDA  in the liver of 
streptozotocin-induced diabetic rats. Data is expressed as mean ± SEM; n = 7 rats, * p< 0.05 against control, # 

p< 0.05 against STZ, a p< 0.05 against MET. 

Effects of T. occidentalis on liver inflammation and COX-2 activation in STZ-induced diabetes 

When compared with control (Figure 2), STZ caused a significant increase (P< 0.05) in TNF-α, IL-1β, NO and 
iNOS levels along with MPO and COX-2 activities in the liver of diabetic rats. However, these inflammation 
biomarkers as well as COX-2 activation were markedly reduced in the liver of rats treated with T. occidentalis 

 

Biomarker  Control STZ TO1 TO2 MET 
ALT (U/L) 74.53 ± 11.2 120.2 ± 15.4*  90.81 ± 10.3 88.25 ± 6.9#  84.69 ± 14.5# 
AST (U/L) 108.5 ± 12.6 250.7 ± 11.3* 164.32 ± 14.1*#a 152.83 ± 10.3*# 136.74 ± 9*# 
ALP (U/L) 134.43  ± 17.5 280.78 ± 11.3* 233.44 ± 8.9*# 209.66 ± 10.2*# 219.76  ± 13.1*# 
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(200mg/kg and 300mg/kg) when compared with group exposed to STZ alone. Similar trend was also observed 
in the group treated with metformin (300mg/kg) when compared with group exposed to STZ alone. 

 

Figure 2: Effect of T. occidentalis (TO) on NO, MPO, IL-1β, TNF-α, iNOS and COX-2 in the liver of 
streptozotocin-induced diabetic rats. Data are expressed as mean ± SEM; n = 7 rats, * p< 0.05 against control, # 

p< 0.05 against STZ, a p< 0.05 against MET. 

Effects of T. occidentalis on liver caspase-3 activation and Histological in STZ-induced diabetes 

Treatment with STZ alone caused a significant increase (P< 0.05) in caspase-3 activity in the liver of diabetic 
rats when compared with control (figure 4). In contrast, treatment with T. occidentalis (200mg/kg and 
300mg/kg) markedly reduced the activity of caspase-3 in the liver of diabetic rats when compared with group 
exposed to STZ alone. Similar trend was observed in the group treated with metformin (300mg/kg) when 
compared with group exposed to STZ alone. The Histological examination of the liver of the diabetes rats 
revealed hyperplasia and severe periportal infiltration of inflammatory cells. Administration of T. occidentalis 
(200mg/kg and 300mg/kg) preserved the liver histological architecture and reduced periportal infiltration by 
inflammatory cells 

                             

Figure 3: Effect of T. occidentalis (TO) on activities caspase-3 in the liver of streptozotocin-induced diabetic 
rats. Data are expressed as mean ± SEM; n = 7 rats, * p< 0.05 against control, # p< 0.05 against STZ, a p< 0.05 

against MET. 
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Figure 4: Hematoxylin and Eosin (H&E) stained section of the liver showing the effect T. occidentalis (TO) on 
streptozotocin-induced diabetic rats. Control (A): no visible lesion; STZ (B): hyperplasia and severe periportal 

infiltration of inflammatory cells. TO1 (C): Moderate periportal infiltration of inflammatory cells TO2 (D): mild 
periportal infiltration of inflammatory cells. MET (E): no visible lesion. Mag x 40 

DISCUSSION 

Diabetes is a disease associated with associated metabolic dysfunction and pathophysiological changes in the 
liver.[29][30] The present study evaluated the antihepatotoxic properties of T. occidentalis in animal model of 
diabetes- induced liver damage. 

Oxidative stress (OS) is a condition defined by an imbalance between the physiological production of reactive 
oxygen species (ROS) and antioxidants. OS has been reported to play an important role in diabetic associated 
hepatic injury.[31] It has therefore, been documented that suppressing OS may alleviate diabetes-associated 
hepatic dysfunction. Endogenous antioxidants such as catalase (CAT), superoxide dismutase (SOD), reduced 
glutathione (GSH) as well as glutathione peroxidase (GPx) synergistically act as a cellular defensive mechanism 
against the obnoxious effect of ROS. 

Superoxide dismutase (SOD) is an enzymatic antioxidant that breaks down superoxide radical to hydrogen 
peroxide. Catalase (CAT) decomposes hydrogen peroxide in living cells and protects the cell against oxidative 
damage by ROS. Glutathione is a ubiquitous non enzymatic antioxidant that facilitates the excretion of 
xenobiotics.[32] In the present study, it was revealed that STZ-induced diabetes caused a significant depletion of 
SOD, CAT and GPx activities as well as GSH levels, implying that they were highly utilized in the mop up of 
reactive oxygen species generated by STZ-induced diabetes in rats. An elevation of these antioxidant enzymes 
in the liver of diabetic rats treated with T. occidentalis suggests the alleviation of free radical damage. This 
effect most likely, is due to the antioxidant properties of T. occidentalis. Metformin was used as a positive 
control and our data showed that the protective effects of T. occidentalis against diabetes induced liver damage 
are comparable to that of metformin. 

Furthermore, lipid peroxidation plays a substantial role in the development and progression of diabetic 
complications.[33] MDA, a product of lipid peroxidation, is an indication of the extent of lipid peroxidation in 
tissues. An increase in the hepatic levels of MDA has been reported in diabetic rats.[34][35][36][37] The results from 
the present study corroborates these observations. Treatment of diabetic rats with T. occidentalis significantly 
reduced lipid peroxidation, an indication its free radical scavenging property. 

Inflammation has been reported to contribute a vast role in the onset of diabetes and diabetes complications.[38] 
IL-1β is a pro-inflammatory cytokine crucial for the activation of pro-inflammatory signaling, leading to tissue 
damage.[39] As an important factor in the inflmmatory signaling network, TNF-α participates in chronic 
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inflammatory reactions and induces apoptosis in then liver.[40][41][42] Elevated TNF-α level has been shown to 
activate inducible nitric oxide synthase (iNOS) which subsequently increases NO generation.[43] COX-2 is an 
inducible enzyme that is elevated in atherosclerosis and it may contribute to initiation of atherosclerotic plaque 
by inducing metalloproteinases.[44] NO is a reactive nitrogen specie and can act as a potent pro-inflammatory 
mediator at concentrations above physiological level. In the present study, treatment with T. occidentalis 
(200mg/kg and 300mg/kg) prevented periportal infiltration of inflammatory cells in the liver and significantly 
reversed the increased levels of NO, iNOS, TNF-α and IL-1β, as well as MPO and COX-2 activation in the liver 
of diabetic rats, thus, suppressing inflammation. These findings further potentiate the anti-inflammatory 
properties of T. occidentalis. 

Apoptosis is a programmed cell death that is tightly regulated to maintain tissue homeostasis, but uncontrolled 
apoptosis has been implicated in the pathobiology of diabetes.[45] Several studies have shown a correlation 
between diabetes, oxidative stress and apoptosis.[46][47][48][49] Oxidative stress and apoptosis have been reported in 
the liver of diabetic rats.[50] Similarly, our work corroborates these observations as caspase-3 activity was 
significantly increased in the liver of diabetic rats in this study. Treatment with T. occidentalis, however, 
protected hepatic cells from activation of apoptotic protein, suggesting the anti-apoptotic property of T. 
occidentalis. 

In conclusion, the present study demonstrated the potentials of T. occidentalis in ameliorating the biochemical 
changes in the liver of rats following experimental induction of diabetes using STZ. The ameliorative activity of 
T. occidentalis in the liver of STZ-induced diabetic rats could partly be related to its antioxidant and anti-
inflammatory properties. 
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