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Abstract: In this paper, we discuss a class of fractional dynamic equations with damping term on time
scales in the teaching of the college course Mathematical Physics Equations, and derive some results for
it. The obtained results can be used in the research of oscillation properties for this kind of equations
on time scales.
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1 Introduction

Dynamic equations with damping term on time scales are important equations in the teaching of the
college course Mathematical Physics Equations. Recently, there have many works related to this domain
[1-10].

A time scale is an arbitrary nonempty closed subset of the real numbers. In this paper, T denotes an
arbitrary time scale. On T we define the forward and backward jump operators σ ∈ (T,T) and ρ ∈ (T,T)
such that σ(t) = inf{s ∈ T, s > t}, ρ(t) = sup{s ∈ T, s < t}.

Definition 1.1. A point t ∈ T is said to be left-dense if ρ(t) = t and t ̸= inf T, right-dense if σ(t) = t
and t ̸= supT, left-scattered if ρ(t) < t and right-scattered if σ(t) > t. The set Tκ is defined to be T if T
does not have a left-scattered maximum, otherwise it is T without the left-scattered maximum.

Definition 1.2. A function f ∈ (T,R) is called rd-continuous if it is continuous at right-dense points
and if the left-sided limits exist at left-dense points, while f is called regressive if 1+µ(t)f(t) ̸= 0, where
µ(t) = σ(t)− t. Crd denotes the set of rd-continuous functions, while R denotes the set of all regressive
and rd-continuous functions, and R+ = {f |f ∈ R, 1 + µ(t)f(t) > 0, ∀t ∈ T}.

Definition 1.3: For some t ∈ Tκ, and a function f ∈ (T,R), the delta derivative of f at t is denoted
by f∆(t) (provided it exists) with the property such that for every ε > 0 there exists a neighborhood U
of t satisfying

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

Note that if T = R, then f∆(t) becomes the usual derivative f ′(t), while f∆(t) = f(t + 1) − f(t) if
T = Z, which represents the forward difference.

Definition 1.4: For p ∈ R, the exponential function is defined by

ep(t, s) = exp(
∫ t
s ξµ(τ)(p(τ))∆τ) for s, t ∈ T.
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If T = R, then

ep(t, s) = exp(
∫ t
s p(τ)dτ), for s, t ∈ R,

If T = Z, then

ep(t, s) =
t−1∏
τ=s

[1 + p(τ)], for s, t ∈ Z and s < t.

The following two theorems include some known properties on the exponential function.

Theorem 1.5 [11, Theorem 5.1]. If p ∈ R, and fix t0 ∈ T, then the exponential function ep(t, t0)
is the unique solution of the following initial value problem

y∆(t) = p(t)y(t),

y(t0) = 1.

Theorem 1.6 [11, Theorem 5.2]. If p ∈ R+, then ep(t, s) > 0 for ∀s, t ∈ T.

Recently, Benkhettou etc. developed a conformable fractional calculus theory on arbitrary time scales
[12], and established the basic tools for fractional differentiation and fractional integration on time scales.

Definition 1.7 [12, Definition 1]. For t ∈ Tκ, α ∈ (0, 1], and a function f ∈ (T,R), the fractional

derivative of α order for f at t is denoted by f (α)(t) (provided it exists) with the property such that for
every ε > 0 there exists a neighborhood U of t satisfying

|[f(σ(t))− f(s)]t1−α − f (α)(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ U.

Definition 1.8 [12, Definition 28]. If F (α)(t) = f(t), t ∈ Tκ, then F is called an α-order antiderivative
of f , and the Cauchy α-fractional integral of f is defined by∫ b

a f(t)∆αt =
∫ b
a f(t)tα−1∆t = F (b)− F (a), where a, b ∈ T.

Theorem 1.9 [12, Theorem 4]. For t ∈ Tκ, α ∈ (0, 1], and a function f ∈ (T,R), the following
conclusions hold:

(i). If f is conformal fractional differentiable of order α at t > 0, then f is continuous at t.

(ii). If f is continuous at t and t is right-scattered, then f is conformable fractional differentiable of

order α at t with f (α)(t) =
f(σ(t))− f(t)

σ(t)− t
t1−α =

f(σ(t))− f(t)
µ(t)

t1−α.

(iii). If t is right-dense, then f is conformable fractional differentiable of order α at t if, and only if,

the limit lim
s→t

f(s)− f(t)
s− t t1−α exists as a finite number. In this case, f (α)(t) = lim

s→t

f(s)− f(t)
s− t t1−α.

(iv). If f is fractional differentiable of order α at t, then f(σ(t)) = f(t) + µ(t)t1−αf (α)(t).

Corollary 1.10. According to the definition of the conformable fractional differentiable of order α,
it holds that f (α)(t) = t1−αf∆(t), where f∆(t) is the usual ∆ derivative in the case α = 1. Furthermore,

if f (α)(t) > 0 (< 0) for t > 0, then f is increasing (decreasing) for t > 0.

By a combination of Theorem 1.5 and Corollary 1.10 one can obtain the following theorem.

Theorem 1.11: Let p̃(t) = tα−1p(t), α ∈ (0, 1]. If p̃ ∈ R, and fix t0 ∈ T, then the exponential function
ep̃(t, t0) is the unique solution of the following initial value problem
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y(α)(t) = p(t)y(t),

y(t0) = 1.

Theorem 1.12 [12, Theorem 15]. Assume f, g ∈ (T,R) are conformable fractional differentiable of
order α. Then

(i). (f + g)(α)(t) = f (α)(t) + g(α)(t).

(ii). (fg)(α)(t) = f (α)(t)g(t) + f(σ(t))g(α)(t) = f (α)(t)g(σ(t)) + f(t)g(α)(t).

(iii). ( 1
f
)(α)(t) = − f (α)(t)

f(t)f(σ(t))
.

(iv). (
f
g )

(α)(t) =
f (α)(t)g(t)− f(t)g(α)(t)

g(t)g(σ(t))
.

Motivated by the analysis above, in this paper, we will consider the following fractional dynamic
equation with damping term on time scales of the following form:

(a(t)[r(t)x(α)(t)](α))(α)+p(t)[r(t)x(α)(t)](α)+q(t)x(t) = 0, t ∈ T0, (1.1)
where α ∈ (0, 1], T is an arbitrary time scale, T0 = [t0,∞)

∩
T, t0 > 0, a, r, p, q ∈ Crd(T0,R+).

2 Main Results

Theorem 2.1. Suppose − p̃
a ∈ R+, and assume that

∫∞
t0

e− p̃
a
(s, t0)

a(s)
∆αs = ∞, (2.1)∫∞

t0
1

r(s)
∆αs = ∞, (2.2)

and Eq. (1.1) has a positive solution x on [t0,∞)T. Then we have the following statements:

(i). There exists a sufficiently large t1 such that (
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

)(α) < 0, [r(t)x(α)(t)](α) > 0 on

[t1,∞)T.

(ii). If furthermore assume that

lim
t→∞

sup
∫ t
t0
[ 1
r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]∆αξ = ∞, (2.3)

then either there exists a sufficiently large t4 such that x(α)(t) > 0 on [t4,∞)T or lim
t→∞

x(t) = 0.

Proof of (i). By − p̃
a ∈ R+ and Theorem 1.6, we have e− p̃

a
(t, t0) > 0. Since x is a positive solu-

tion of (1.1) on [t0,∞)T, by Theorem 1.12 (iv) and Theorem 1.11 we obtain that

(
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

)(α) =
e− p̃

a
(t, t0)(a(t)[r(t)x

(α)(t)](α))(α) − (e− p̃
a
(t, t0))

(α)a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)e− p̃

a
(σ(t), t0)

=
a(t)[r(t)x(α)(t)](α))(α) + p(t)[r(t)x(α)(t)](α)

e− p̃
a
(σ(t), t0)

=
−q(t)x(t)

e− p̃
a
(σ(t), t0)

< 0. (2.4)
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According to Corollary 1.10 one can see
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

is decreasing on [t0,∞)T. Furthermore, by

Theorem 1.6 one has e− p̃
a
(t, t0) > 0. So considering a(t) > 0 one can obtain that [r(t)x(α)(t)](α) is

eventually of one sign. We claim [r(t)x(α)(t)](α) > 0 on [t1,∞)T. Otherwise, assume there exists a suffi-

ciently large t2 > t1 such that [r(t)x(α)(t)](α) < 0 on t ∈ [t2,∞)T. Then from Corollary 1.10 one can see

r(t)x(α)(t) is decreasing on [t2,∞)T, and from Definition 1.8 it holds that

r(t)x(α)(t)− r(t2)x
(α)(t2) =

∫ t
t2

e− p̃
a
(s, t0)a(s)[r(s)x

(α)(s)](α)

e− p̃
a
(s, t0)a(s)

∆αs

≤ a(t2)[r(t2)x
(α)(t2)]

(α)

e− p̃
a
(t2, t0)

∫ t
t2

e− p̃
a
(s, t0)

a(s)
∆αs. (2.5)

It follows from (2.1) that lim
t→∞

r(t)x(α)(t) = −∞, and thus there exists a sufficiently large t3 ∈ [t2,∞)T

such that r(t)x(α)(t) < 0 on [t3,∞)T. So

x(t)− x(t3) =
∫ t
t3

r(s)x(α)(s)
r(s)

∆αs ≤ r(t3)x
(α)(t3)

∫ t
t3

1
r(s)

∆αs.

Due to (2.2) one can deduce that lim
t→∞

x(t) = −∞, which leads to a contradiction. So it holds that

[r(t)x(α)(t)](α) > 0 on [t1,∞)T, and the proof is complete.

Proof of (ii). According to (i), since [r(t)x(α)(t)](α) > 0 on [t1,∞)T, from Corollary 1.10 one can

see that x(α)(t) is eventually of one sign. So there exists a sufficiently large t4 > t1 such that either

x(α)(t) > 0 or x(α)(t) < 0 on [t4,∞)T.

If x(α)(t) < 0, then x(t) is decreasing, and considering x(t) is a positive solution of Eq. (1.1) on

[t0,∞)T, one can obtain that lim
t→∞

x(t) = β1 ≥ 0 and lim
t→∞

r(t)x(α)(t) = β2 ≤ 0. We claim β1 = 0. Oth-

erwise, assume β1 > 0. Then there exists t5 such that x(t) ≥ β1 on [t5,∞)T, and fulfilling α-fractional
integral for (2.4) from t to ∞ yields

−a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

= − lim
t→∞

a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

+
∫∞
t

−q(s)x(s)
e− p̃

a
(σ(s), t0)

∆αs

≤ −
∫∞
t

q(s)x(s)
e− p̃

a
(σ(s), t0)

∆αs ≤ −β1
∫∞
t

q(s)
e− p̃

a
(σ(s), t0)

∆αs,

which is followed by

−[r(t)x(α)(t)](α) ≤ −β1[
e− p̃

a
(t, t0)

a(t)

∫∞
t

q(s)
e− p̃

a
(σ(s), t0)

∆αs]. (2.6)

Substituting t with τ in (2.6), fulfilling α-fractional integral for (2.6) with respect to τ from t to ∞
yields

r(t)x(α)(t) = lim
t→∞

r(t)x(α)(t)− β1
∫∞
t (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ

= β2 − β1
∫∞
t (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ

≤ −β1
∫∞
t (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ,

which implies
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x(α)(t) ≤ −β1[
1

r(t)

∫∞
t (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]. (2.7)

Substituting t with ξ in (2.7), fulfilling α-fractional integral for (2.7) with respect to ξ from t5 to t
yields

x(t)−x(tt) ≤ −β1
∫ t
t5
[ 1
r(ξ)

∫∞
ξ (

e− p̃
a
(τ, t0)

a(τ)

∫∞
τ

q(s)
e− p̃

a
(σ(s), t0)

∆αs)∆ατ ]∆αξ. (2.8)

By (2.8) and (2.3) we have lim
t→∞

x(t) = −∞, which leads to a contradiction. So it holds that β1 = 0. The

proof is completed.

Theorem 2.2. Suppose − p̃
a ∈ R+, and assume that x is a positive solution of Eq. (1.1) such that

[r(t)x(α)(t)](α) > 0, x(α)(t) > 0 on [t1,∞)T,
where t1 ≥ t0 is sufficiently large. Then we have

x(α)(t) ≥ δ1(t, t1)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

].

Proof . From Theorem 2.1 one can see that
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

is decreasing on [t1,∞). So

r(t)x(α)(t) ≥ r(t)x(α)(t)− r(t1)x
(α)(t1) =

∫ t
t1

e− p̃
a
(s, t0)a(s)[r(s)x

(α)(s)](α)

e− p̃
a
(s, t0)a(s)

∆αs

≥ a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

∫ t
t1

e− p̃
a
(s, t0)

a(s)
∆αs = δ1(t, t1)

a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

,

and then

x(α)(t) ≥ δ1(t, t1)
r(t)

[
a(t)[r(t)x(α)(t)](α)

e− p̃
a
(t, t0)

].

The proof is completed.

3 Conclusions

We have established some new results for a class of fractional dynamic equation with damping term on
time scales. These results can be used in the research of oscillation properties for this kind of equations,
which is supposed to further research.
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