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Abstract: In this paper, we are concerned with seeking exact solutions for space-time fractional
differential equations arising in the teaching of the college course mathematical physical equations.
The improved (G’/G) method is extended to seek exact solutions for fractional differential equations
in the sense of the conformable fractional derivative. Based on a fractional complex transformation,
a certain fractional differential equation can be converted into another ordinary differential equation
of integer order, and then can be solved subsequently based on the homogeneous balance principle.
As for applications of this method, we apply it to solve the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System, and as a result, construct some new exact solutions for it.
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1 Introduction

Fractional differential equations play important roles in the teaching of mathematical physical equations,
and have attracted much attention in a variety of applied sciences including physics, dynamical systems,
control systems, engineering and so on. Furthermore, they are employed in social sciences such as food
supplement, climate, and economics. Recently there have been an increasing attention to fractional
differential equations due to their frequent appearance in wide applications in various fields. Many
practical problems lead to the necessity of seeking exact solutions and numerical solutions for fractional
differential equations. Many powerful and efficient methods have been proposed so far, such as the
fractional Jacobi elliptic equation method [1], the fractional sub-equation method [2-4], the variational
iterative method [5-6], the Adomian decomposition method [7], the homotopy perturbation method [8-10]
and so on. Based on these methods, a variety of fractional differential equations have been investigated.

In this paper, we extend the known improved (G’/G) method [11] to seek exact solutions for fractional
differential equations. The fractional differential equations concerned are defined in the sense of the
conformable fractional derivative [12]. Based on a fractional complex transformation, a certain fractional
differential equation can be converted into another differential equation of integer order, and then can
be solved subsequently based on the homogeneous balance principle. For demonstrating the validity of
the two methods, we apply it to construct exact solutions for (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System.

The definition and some important properties of the conformable fractional derivative [12] are listed
as follows.

Dαf(t) = lim
ε→0

f(t+ εt1−α)− f(t)
ε . (1)

Dα
t (t

γ) = γtγ−α. (2)
Dα

t (f(t)g(t)) = g(t)Dα
t f(t) + f(t)Dα

t g(t). (3)

IJRDO-Journal of Educational Research ISSN: 2456-2947

Volume-3 | Issue-11 | Nov, 2018 9



Dα
t f [g(t)] = f ′

g[g(t)]D
α
t g(t). (4)

Dα
t (

f
g )(t) =

g(t)Dαf(t)− f(t)Dαg(t)

g2(t)
. (5)

The rest of this paper is organized as follows. In Section 2, we give the description of the improved
(G’/G) method for seeking exact solutions of fractional differential equations. In Section 3, we apply the
improved (G’/G) method to construct exact solutions for the (2+1)-dimensional space-time fractional
Nizhnik-Novikov-Veselov System. Some conclusions are presented at the end of the paper.

2 Description of the improved (G’/G) method for fractional differen-
tial equations

In this section we give the description of the improved (G’/G) method for seeking exact solutions of
fractional differential equations.

Suppose that a fractional partial differential equation, say in the independent variables t, x1, x2, ..., xn,
is given by

P (u1, ...uk, Dα
t u1, ..., D

α
t uk, D

β
x1
u1, ..., D

β
x1
uk, ..., D

γ
xn
u1, ..., D

γ
xn
uk, ...) = 0, (6)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown functions, P is a polynomial in ui and their
various partial derivatives including fractional derivatives.

Step 1. Execute certain variable transformation

ui(t, x1, x2, ..., xn) = Ui(ξ), ξ = ξ(t, x1, x2, ..., xn), (7)

such that Eq. (6) can be turned into the following ordinary differential equation of integer order with
respect to the variable ξ:

P̃ (U1, ..., Uk, U ′
1, ..., U

′
k, U

′′
1 , ..., U

′′
k , ...) = 0. (8)

Step 2. Suppose that the solution of (8) can be expressed by a polynomial in (G
′

G ) as follows:

Uj(ξ) =

mj∑
i=0

aj,i(
G′

G
)i, j = 1, 2, ..., k, (9)

where aj,i, i = 0, 1, ...,mj , j = 1, 2, ..., k are constants to be determined later, aj,m ̸= 0, the positive inte-
ger mj can be determined by considering the homogeneous balance between the highest order derivatives
and nonlinear terms appearing in (8), G = G(ξ) satisfies the second order ODE in the form

AGG′′ −BGG′ − C(G′)2 − EG2 = 0, (10)

where A, B, C, E are real parameters.
Denote

∆1 = B2 + 4E(A− C), ∆2 = E(A− C). (11)

By the general solutions of Eq. (10) [11] we have the following expressions for (
G′(ξ)
G(ξ)

):

When B ̸= 0, ∆1 > 0:

(
G′(ξ)

G(ξ)
) =

B

2(A− C)
+

√
∆1

2(A− C)
[

C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

], (12)

where C1, C2 are arbitrary constants.
When B ̸= 0, ∆1 < 0:
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(
G′(ξ)

G(ξ)
) =

B

2(A− C)
+

√
−∆1

2(A− C)
[

−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

], (13)

where C1, C2 are arbitrary constants.
When B ̸= 0, ∆1 = 0:

(
G′(ξ)

G(ξ)
) =

B

2(A− C)
+

C2

C1 + C2ξ
, (14)

where C1, C2 are arbitrary constants.
When B = 0, ∆2 > 0:

(
G′(ξ)

G(ξ)
) =

√
∆2

(A− C)
[

C1 sinh

√
∆2ξ

(A− C)
+ C2 cosh

√
∆2ξ

(A− C)

C1 cosh

√
∆2ξ

(A− C)
+ C2 sinh

√
∆2ξ

(A− C)

], (15)

where C1, C2 are arbitrary constants.
When B = 0, ∆2 < 0:

(
G′(ξ)

G(ξ)
) =

√
−∆2

(A− C)
[

−C1 sin

√
−∆2ξ

(A− C)
+ C2 cos

√
−∆2ξ

(A− C)

C1 cos

√
−∆2ξ

(A− C)
+ C2 sin

√
−∆2ξ

(A− C)

], (16)

where C1, C2 are arbitrary constants.

Step 3. Substituting (9) into (8) and using (10), collecting all terms with the same order of (G
′

G )

together, the left-hand side of (8) is converted into another polynomial in (G
′

G ). Equating each coefficient

of this polynomial to zero, yields a set of algebraic equations for aj,i, i = 0, 1, ...,m, j = 1, 2, ..., k.

Step 4. Solving the equations system in Step 3, and using (12)-(16), we can construct a variety of
exact solutions for Eq. (6).

3 Application of the improved (G’/G) method to the (2+1)-dimensional
space-time fractional Nizhnik-Novikov-Veselov System

In this section, we apply the improved (G’/G) method described in Section 2 to seek exact solutions for
the (2+1)-dimensional space-time fractional Nizhnik-Novikov-Veselov System [13]

Dα
t u+ aD3β

x u+ bD3γ
y u+ cDβ

xu+ dDγ
yu

= 3aDβ
x(uv) + 3bDγ

y (uw),

Dβ
xu = Dγ

yv,

Dγ
yu = Dβ

xw,

, 0 < α, β, γ ≤ 1, (17)

which is a fractional extension of the following (2+1)-dimensional Nizhnik-Novikov-Veselov system [14]:
ut + auxxx + buyyy + cux + duy = 3a(uv)x + 3b(uw)y,
ux = vy,
uy = wx.

(18)
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In order to apply the improved (G’/G) method, we suppose u(x, y, t) = U(ξ), v(x, y, t) = V (ξ), w(x, y, t) =

W (ξ), where ξ = m
α tα + k

β
xβ + l

γ y
γ + ξ0, m, k, l, ξ0 are all constants with k, l, m ̸= 0. By use of (2)

and (4), we obtain 
Dα

t u = Dα
t U(ξ) = U ′(ξ)Dα

t ξ = mU ′(ξ),

Dβ
xu = Dβ

xU(ξ) = U ′(ξ)Dβ
xξ = kU ′(ξ),

Dγ
yu = Dγ

yU(ξ) = U ′(ξ)Dγ
y ξ = lU ′(ξ),

and then Eqs. (17) can be turned into the following forms
mU ′ + ak3U ′′′ + bl3U ′′′ + ckU ′ + dlU ′ = 3ak(UV )′ + 3bl(UW )′,
kU ′ = lV ′,
lU ′ = kW ′.

(19)

Integrating (19) once, we have
mU + ak3U ′′ + bl3U ′′ + ckU + dlU = 3akUV + 3blUW + g1,
kU = lV + g2,
lU = kW + g3,

(20)

where g1, g2, g3 are the integration constants.

Suppose that the solutions of (20) can be expressed by a polynomial in (G
′

G ) as follows:

U(ξ) =

m1∑
i=0

ai(
G′

G
)i, V (ξ) =

m2∑
i=0

bi(
G′

G
)i, W (ξ) =

m3∑
i=0

ci(
G′

G
)i, (21)

where ai, bi, ci are constants, and G = G(ξ) satisfies Eq. (10). Balancing the order of u′′ and uv, the
order of u and v, the order of u and w in (20), we can obtain m1 = m2 = m3 = 2. So we have

U(ξ) = a0 + a1(
G′

G
)1 + a2(

G′

G
)2, V (ξ) = b0 + b1(

G′

G
)1 + b2(

G′

G
)2, W (ξ) = c0 + c1(

G′

G
)1 + c2(

G′

G
)2. (22)

Substituting (22) into (20), using Eq. (10) and collecting all the terms with the same power of (G
′

G )

together, equating each coefficient to zero, yields a set of algebraic equations. Solving these equations,
yields:

Case 1:

a2 =
2lk(−C +A)2

A2 , a1 = −2klB(−C +A)

A2 , a0 = −2klE(−C +A)

A2 , g1 = g2 = g3 = 0

b2 =
2k2(−C +A)2

A2 , b1 = −2k2B(−C +A)

A2 , b0 = −2k2E(−C +A)

A2 ,

c2 =
2l2(−C +A)2

A2 , c1 = −2l2B(−C +A)

A2 , c0 = −2l2E(−C +A)

A2 ,

m = −dlA2 + ckA2 + 4bl3AE + 4ak3AE + bl3B2 − 4ak3CE + ak3B2 − 4bl3CE

A2 .

Case 2:

a2 =
2lk(A2 − 2CA+ C2)

A2 , a1 = −2klB(−C +A)

A2 , a0 = − lk(2AE − 2CE −B2)

3A2 ,

b2 =
2k2(A2 − 2CA+ C2)

A2 , b1 = −2k2B(−C +A)

A2 , b0 = −k2(2AE − 2CE −B2)

3A2 ,
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c2 =
2l2(A2 − 2CA+ C2)

A2 , c1 = −2l2B(−C +A)

A2 , c0 = − l2(2AE − 2CE −B2)

3A2 ,

m = −dlA2 + ckA2 − 4bl3AE − 4ak3AE − bl3B2 + 4ak3CE − ak3B2 + 4bl3CE

A2 ,

g1 = g2 = g3 = 0.

Substituting the results above into Eqs. (22) and combining with (12)-(16) we can obtain correspond-
ing exact solutions for Eqs. (18).

For example, from Case 1 and the combination with (12)-(14) we get the following three families of
exact solutions, where C1, C2 are arbitrary constants, and

ξ = [−dlA2 + ckA2 + 4bl3AE + 4ak3AE + bl3B2 − 4ak3CE + ak3B2 − 4bl3CE

A2 ]

× tα

α
+

k

β
xβ +

l

γ
yγ + ξ0.

Family 1: when B ̸= 0, ∆1 > 0:

u1(x, y, t) = −2klE(−C +A)

A2 − 2klB(−C +A)

A2 ×

{ B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}1

+
2lk(−C +A)2

A2 { B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}2,

v1(x, y, t) = −2k2E(−C +A)

A2 − 2k2B(−C +A)

A2 ×

{ B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}1

+
2k2(−C +A)2

A2 { B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}2,

w1(x, y, t) = −2l2E(−C +A)

A2 − 2l2B(−C +A)

A2 ×

{ B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}1

+
2l2(−C +A)2

A2 { B
2(A− C)

+

√
∆1

2(A− C)
[
C1 sinh

√
∆1ξ

2(A− C)
+ C2 cosh

√
∆1ξ

2(A− C)

C1 cosh

√
∆1ξ

2(A− C)
+ C2 sinh

√
∆1ξ

2(A− C)

]}2.

Family 2: when B ̸= 0, ∆1 < 0:

u2(x, y, t) = −2klE(−C +A)

A2 − 2klB(−C +A)

A2 ×
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{ B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}1

+
2lk(−C +A)2

A2 { B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}2,

v2(x, y, t) = −2k2E(−C +A)

A2 − 2k2B(−C +A)

A2 ×

{ B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}1

+
2k2(−C +A)2

A2 { B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}2,

w2(x, y, t) = −2l2E(−C +A)

A2 − 2l2B(−C +A)

A2 ×

{ B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}1

+
2l2(−C +A)2

A2 { B
2(A− C)

+

√
−∆1

2(A− C)
[
−C1 sin

√
−∆1ξ

2(A− C)
+ C2 cos

√
−∆1ξ

2(A− C)

C1 cos

√
−∆1ξ

2(A− C)
+ C2 sin

√
−∆1ξ

2(A− C)

]}2.

Family 3: when B ̸= 0, ∆1 = 0:

u3(x, y, t) = −2klE(−C +A)

A2 − 2klB(−C +A)

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}1

+
2lk(−C +A)2

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}2,

v3(x, y, t) = −2k2E(−C +A)

A2 − 2k2B(−C +A)

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}1×

+
2k2(−C +A)2

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}2,

w3(x, y, t) = −2l2E(−C +A)

A2 − 2l2B(−C +A)

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}1×

+
2l2(−C +A)2

A2 { B
2(A− C)

+ C2
C1 + C2ξ

}2.
From Case 2 and the combination with (12)-(16) we can obtain corresponding exact solutions similar

above, which are omitted here.

Remark. If we put A = 1, B = −λ, C = 0, E = −µ, then the solutions denoted in Families 1-3
above reduce to the results established in [13, Eqs. (24)-(26)]. Furthermore, if we put A = 1, B =
−λ, C = 0, E = −µ, α = 1, k = l = 1, then the solutions in Families 1-3 reduce to the results estab-
lished in [14] despite the slight difference of the forms of constants. So the solutions obtained here are of
more general forms than those in [13,14].
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4 Conclusions

The improved (G’/G) method have been extended to seek exact solutions for fractional differential e-
quations arising in the teaching of mathematical physical equations. The most important point lies in
the fractional complex transformation put on fractional differential equations. Based on the fractional
complex transformation, certain fractional differential equation can be converted into another ordinary
differential equation of integer order, and then can be solved subsequently based on the homogeneous
balance principle. As for applications, we apply this method to solve the (2+1)-dimensional space-time
fractional Nizhnik-Novikov-Veselov System. With the aid of the mathematical software, some new exact
solutions have been successfully found. Finally, we note that this method can be easily applied to solve
many other fractional differential equations.
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