

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

Wireless Mobile Computing using Energy-E Client Caching

Mamta Gothwal

 Sukhwinder Kaur

Abstract

Caching can reduce the bandwidth requirement in a mo-bile
computing environment. However, due to battery power
limitations, a wireless mobile computer may of-ten be
forced to operate in a doze or even totally dis-connected
mode. As a result, the mobile computer may miss some
cache invalidation reports broadcasted by a server, forcing
it to discard the entire cache contents after waking up. In this
paper, we present an energy-e cient cache invalidation
method, called GCORE, that allows a mobile computer to
operate in a discon-nected mode to save battery while still
retaining most of the caching bene ts after a reconnection.
We present an e cient implementation of GCORE and
conduct simulations to evaluate its caching e ectiveness. The
results show that GCORE can substantially improve mobile
caching by reducing the communication band-width (or
energy consumption) for query processing.

1 Introduction

Mobile computing enables people with unrestricted mo-
bility. It can satisfy people's information needs at any time
and in any place. In mobile computing, battery-powered,
portable machines can be used by users to query the
information/database servers through the wireless
communication channels [1, 2, 3, 4]. However, due to
limitations on battery technologies, these mobile computers
may be frequently disconnected (i.e., pow-ered o) in order
to conserve battery energy.

In general, the bandwidth of the wireless channels is
rather limited. Thus, caching of frequently used data in a
mobile computer can be an e ective approach to reducing the
wireless bandwidth requirement [4]. Once caching is used,
a cache invalidation strategy is needed to ensure the data
cached in the mobile computers are consistent with those
stored in the server. However, if mobile computers must be

powered o for energy con-servation, cache consistency may
be di cult to enforce.

Depending on whether or not the server maintains the

state of the mobile clients' cache, there are two categories of
invalidation strategies [4]. In the rst category, the server
knows which data are cached by which mobile computers and
it is called a stateful server. Once a data item is changed, the
server sends inval-idation messages to the clients that are
caching that particular data. The server has to locate the clients.
But, disconnected mobile clients cannot be contacted by the
server. Thus, a disconnection by a mobile com-puter
automatically means its cache is no longer valid. Moreover, if
a mobile computer wants to relocate, it may have to notify the
servers. This implies some re-strictions on the freedom of the
mobile computer.

In the second category, the server is not aware of the state of
its clients' cache and it is called a stateless server. The server
does not even know which mobile computers are currently
active. To ensure cache con-sistency, the server simply
periodically broadcasts an invalidation report containing the
data items that have been updated recently. The mobile clients
listen to the broadcast and invalidate their caches accordingly.

In [4], three cache invalidation schemes using di er-ent
invalidation reports were proposed for the case of a stateless
server. In these three schemes, no attempt was made to
check with the server whether or not some of the cached
objects are still valid after a reconnection. As a result, when
a mobile computer wakes up, it may have to discard the
entire cache contents if the discon-nection has been too long.
This is because the mobile computer does not know whether
or not some of its cached objects have been updated since it
became dis-connected. Discarding the entire cache because
of a disconnection can be costly as most of the bene ts of
caching are lost, especially if most of the cached objects are
still valid.

In this paper, we propose an energy-e cient cache in-validation
scheme that salvages as many cached objects as possible after a
reconnection. Unlike the schemes proposed in [4], which do not
check cache validity after a reconnection, our schemes check the
cache validity with the server, if necessary, and retain as many
valid objects as possible. Since checking cache validity not only
requires uplink bandwidth but also consumes bat-tery energy, it
must be done e ciently. One simple checking approach is to send
all the cached object ids

to the server. This is costly because the number of object ids
can be large. One possible approach to re-ducing the overhead

of validity checking is to do it at a group level, instead of object
level. With such a simple grouping scheme, however, the entire
group must be invalidated if any of the objects in the group has
been updated. In this paper, we propose a new scheme called

 No. 04 www.jiaats.com JIAATS-JEEE

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

Grouping with COld update-set REtention (GCORE). In
GCORE, instead of invalidating the entire group, we retain the
cold update set of the objects in the group if all the updated
objects (most likely belong to the hot update set) have been
included in the most recently broadcasted invalidation report.

Here, the hot update set represents the set of ob-jects that are
frequently updated by transactions in the server, while the cold
update set is the set of objects that are less frequently updated.
Obviously, some of the objects referenced by queries and
cached in a mobile computer may belong to the hot update set
and thus may often be invalidated. Nevertheless, objects that
are frequently updated are highly likely to be included in the
latest broadcast invalidation report. Therefore, the objects in a
group that belong to the cold update set are likely to be retained.
GCORE tries to e ciently retain, if possible, the cold update set
of a group on the mobile computer.

To evaluate and compare the performance of GCORE with these
schemes, we developed an event-driven simulator. The e
ectiveness of caching is com-puted as the bandwidth requirement
for query process-ing in a mobile computer. Lower bandwidth
require-ment means more energy-e cient caching in a mobile
computer because it consumes less energy to receive and send
messages. The simulation results show that compared with no
checking (such as the ones presented in [4]) and simple checking
schemes, both GCORE and the simple grouping schemes signi
cantly improve the caching e ectiveness by reducing the bandwidth
re-quirement for query processing. Moreover, GCORE is more
energy e cient than th e simple grouping scheme.

The recent popularity of portable personal comput-ers has
attracted a lot of interests in mobile computing. There have
been many papers discussing other aspects of supporting
mobile computing, including location management, data
replication, communication and other system design issues,
such as [5, 6, 7, 8, 9, 10, 11]. These citations are by no means
exhaustive as many research and development projects are
currently being actively conducted to build the national
information infrastructure. Our attentions in this paper speci -
cally focus on the issues of supporting energy-e cient caching
in a wireless mobile computing environment, closely related to
[4, 1]. E ective caching and other is-sues for supporting mobile
computing are very impor-tant in the future for providing
information services to users at any time and in any place.

The rest of the paper is organized as follows. Sec-tion 2
describes the cache invalidation schemes for

Figure 1: A wireless mobile computing environment.

a stateless server. Section 3 presents the simulation model.
Section 4 discusses the simulation results.

2 Cache invalidation schemes

Fig. 1 shows a generic wireless mobile computing
environment, similar to the one described in [4, 2]. There are
multiple wireless radio cells. Each cell has a mobile server that
is equipped with wireless communication capability. It stores a
complete copy of the database. The mobile servers are
connected through a communi-cation network (typically
wired). A mobile computer can connect to a server (uplink)
through a wireless com-munication channel. It can disconnect
from the server by operating in a dose mode (consumes signi
cantly less energy) or a power-o mode. It can move from one
cell to another cell. The server can communicate with a
particular mobile computer through a wireless channel, if the
mobile computer is not powered o . We assumed that data are
only updated in the servers. Mo-bile computers only read the
data and do not update them. To ensure cache consistency, the
server periodi-cally broadcasts invalidation reports and all the
mobile computers, if active, listen to the reports and invalidate
their caches accordingly. Database is assumed to be completely
replicated in the mobile servers, so that when a mobile
computer moves to another cell, it re-ceives similar

 invalidation reports.
Frequently referenced objects by queries are cached in a

mobile computer. We assumed that the cache at the mobile
computer is a nonvolatile memory such as a hard disk. After a
disconnection, the content of the cache can still be retrieved.
The server keeps track of the object ids that are recently
updated and broadcasts an invalidation report every L seconds.
The most re-cent invalidation report broadcasted is denoted as
IR in this paper. IR consists of the current timestamp T
 No-Checking:

if (Tlb < (T , w L)) invalidate

 wireless MC wireless

MC

radio
 radio

 cell cell

 MS MS MC

 communication
relocate network

MC mobile

mobile MS MS server
 computer

 connected
MC

 MC

wireless

disconnected
MC wireless

 radio radio cell cell

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

 the entire
cache; else f

for 8oi 2 IR f

 if (oi is in the cache) and (ti > t
c
i)

invalidate oi;
 g
 g

8q 2 QL
 f

if all the objects referenced by q are in the cache
 process q; else
 send the missed object ids to the server; g

Tlb = T ;

Figure 2: Algorithm for query processing using the
nochecking scheme.

and a list of (oi; ti) such that ti > (T ,w L), where oi is an object
id and ti is its corresponding most recent update timestamp,
and w is the invalidation broadcast window. Namely, IR
contains the update history of the past w broadcast intervals.

2.1 No-checking caching scheme

Due to the constraint of limited energy, a mobile com-puter is
usually required to operate in a doze mode (not active) or even
to be completely disconnected for a prolonged period of time.
As a result, a mobile client may miss certain invalidation
messages broadcasted by the server. Upon missing an
invalidation report, a mo-bile computer may have to discard the
entire cache, since it does not know which parts of the cache is
valid. This simple scheme is called the no-checking scheme in
this paper and is similar to the broadcasting timestamp scheme
proposed in [4]. Fig. 2 shows the query processing algorithm
for a mobile computer after re-ceiving an invalidation report.
Throughout this paper, we assumed that all the queries are
batched in a query list, QL, and are not processed until a mobile
computer invalidates its cache after receiving an invalidation
re-port. Also, the timestamp of the latest invalidation report
received, denoted by Tlb , is also reliably main-tained so that
after a mobile computer wakes up from a disconnection, it
knows the timestamp of the latest report that it received.

In Fig. 2, tc
i is the timetamp of the cached copy of ob-ject oi

. For those objects that are missed in the cache, the object ids
are sent to the server and the server then
sends back the data and the associated update time-stamps to
the mobile computer. They will be again cached in the mobile
computer. For the no-checking scheme shown in Fig. 2, if a
mobile computer has been disconnected for more than w
broadcast intervals, then it must discard the entire cache
contents once it re-connects. This can signi cantly increase the
wireless bandwidth requirement between the mobile computer
and the server as most of the objects subsequently ref-erenced
by queries result in cache misses.

2.2 Simple-checking caching scheme

Note that even after a long period of disconnection, we may
still retain many objects in the cache. This can signi cantly
reduce the bandwidth requirement be-cause the mobile
computer can use its cached data. In order to retain cached
data, we need to identify which cached data are still valid.

There are several approaches to identifying valid cache
entries after a disconnection. They involve dif-ferent trade-o s.
To accurately identify the valid cache entries, a mobile
computer can send all the cached ob-ject ids and their
corresponding timestamps. However, this requires a lot of
uplink bandwidth as well as bat-tery energy. On the other hand,
the mobile computer can send group ids and group timestamps;
the validity can be checked at the group level. This reduces the
uplink bandwidth requirement. But, a single object updated
essentially invalidates the entire group. As a result, the amount
of cached objects salvaged after a reconnection may be quite
small. GCORE combines the advantages of both schemes by
salvaging as many cached objects as possible and consumes as
little uplink cost as possbile.

Note that it is su cient to just send Tlb with object ids or group
ids to the server. The object timestamps or group timestamps
need not be sent. This is because once a mobile computer
processes a new IR, all the valid cache entries can be viewed as
being timestamped at that moment. The server can check the
validity of an object or a group of objects based on Tlb .

For the simple checking scheme, only Tlb and all the object
ids that are still not yet invalidated by a mobile computer are
sent to the server. The server then com-pares Tlb with the object
update timestamp stored in the server and sends a validity
report back to the mo-bile computer. This validity report can
simply be a bit vector, with each bit indicating yes or no for the
cor-responding object. To process queries, a mobile com-puter
rst invalidates its cache according to IR. Then, if the mobile
computer just wakes up from a disconnection and Tlb < (T , w

L), it sends the cached objects that are not yet invalidated to the
server for validity checking. After receiving the validity report
from the server, the mobile computer then processes the
queries.

2.3 Simple-grouping caching scheme

In order to reduce the uplink communication costs for validity
checking, the database can be partitioned into a number of
groups and a mobile computer checks its cache validity at the
group level. The grouping function can be simply a modulo
function. Or it can be di er-ent for di erent types of objects.
Whatever grouping function is chosen, it must be agreed upon
between the server and the mobile computer. Data objects
belong-ing to a group may or may not be in a mobile cache.
But, the group validity checking is not a ected by the grouping
function or by the fact that some of the group objects are not in
a mobile cache. The grouping of ob-jects is used only for cache
validity checking after a mo-bile computer reconnects, it is not
used by the server for broadcasting invalidation reports.

The query processing algorithm for simple grouping is
similar to the one for simple checking, except that it sends
much less information to the server and as a re-sult requires
much less uplink bandwidth. It is the same as GCORE, to be
described next, in sending the group ids and Tlb to the server for

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

group validity checking. However, it di ers from GCORE in the
way the server determines whether or not a group is valid. In
the sim-ple grouping scheme, if any object within a group is
updated after Tlb, then the entire group is considered to be
invalid. Thus, the amount of cached objects that can be retained
may be small after a reconnection, re-sulting in a large amount
of uplink and downlink costs due to cache misses from future
query processing.

2.4 Grouping with cold update-set re-tention

(GCORE)

To avoid discarding of a group, we present a group-ing with
cold update-set retention scheme to improve the caching e
ectiveness. Similar to the simple group-ing scheme, the
server partitions the database into a number of groups. So, it
incurs relatively small uplink costs for validity checking.
However, unlike the simple grouping scheme, GCORE tries
to salvage a group so that the future downlink costs due to
cache misses can be signi cantly reduced.

In addition to grouping, the server also dynamically identi es
hot update set that has been updated in a group and excludes it
from the group when checking the group's validity. If all the
updated object ids in a group have already been included in IR,
these objects should be invalidated by the mobile computer
when it receives IR. With the hot update set excluded from a
group, the server can conclude that the objects that are not
updated in the group can be retained in the cache and validate
the rest of the group. This scheme is therefore referred to as
grouping with cold update-set retention in this paper. GCORE
is energy e cient because it incurs both low uplink costs for
validity checking and low downlink costs as it retains more
cached objects.

struct group_table_entry
{

double time; int

 total_wW;
struct pair *uplist; }

group_table[];

Figure 3: Data structure for group update history.

To facilitate a mobile computer to salvage many of its
local cache contents without incurring high uplink costs, the
server needs to maintain a more sophisti-cated data structure
for the group update history. It maintains for each group the
object update history of the past W broadcast intervals (W

w), consisting of a list of object ids and their most recent
update timestamps, and the most recent update time of the
group. This group update history is maintained in group

table[] (see Fig. 3 for its de nition). In ad-dition, it also
maintains the number of distinct objects that were most
recently updated between (T , W L) and (T ,w L) to speed up
the group validity checking.

As an example, Fig. 4 shows a snapshot of a group table
entry, group table[1]. In Fig. 4, group 1 con-tains objects A;

B; C; D; E; and F. A broadcast in-terval is 20 minutes, w = 3
and W = 6. Object A was updated at 09:08 and object B was
updated at 08:12. The server keeps track of the update
history of the past 6 broadcast intervals. Thus, both objects
A and B and their update timestamps are maintained in group

table[1].uplist. It also shows that the most recent update to
this group was at time 09:08. Since IR contains the update
history of the past 3 broadcast intervals, the number of
distinct objects that were most recently updated between (T
,W L) and (T ,w L) is 1. Namely, group table[1].tot wW at the
moment is 1 (the number of distinct objects most recently
up-dated between 08:00 and 09:00 is

1).
For every update to objects, the server updates group

table[]. As a continuing example, Fig. 5 shows the changes
to group table[1] at time 10:19 after ob-ject A and E were
updated at 10:02 and 10:16, respec-tively. The update
timestamp of object A is changed to the most recent update
time of 10:02 and a new pair (E, 10:16) is inserted into the
update list pointed to by group table[1].uplist. Of course, the
group update time is also changed to 10:16 to re ect the most
recent update to the group.

Each time the server broadcasts an invalidation re-port, it
also updates group table[]. For every group, the server
removes the pairs in group table[].uplist that have update
times less than T , W L. This would eliminate any objects
that were updated before T , W L, and limit the amount of
history that the server must maintain under GCORE. In

addition, the

 update B update A 08:12 09:08 time

08:00 08:20 08:40 09:00 09:20 09:40 10:00

 group_table[1]:

time = 09:08; total_wW = 1; uplist-->(A, 09:08)-
->(B, 08:12)-->NULL;

Group[1] = {A, B, C, D, E, F}; w = 3; W = 6

 Current time = 10:00

T = 10:00

Figure 4: Example of a group table[].

update B update A update A
08:12 09:08 10:02

time

08:00 08:20 08:40 09:00 09:20 09:40 10:00

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

10:16
update E

group_table[1]:

time = 10:16;
total_wW = 1;
uplist-->(E, 10:16)-->(A, 10:02)-->(B, 08:12)-->NULL;

Group[1] = {A, B, C, D, E, F}; w = 3; W = 6

Current time = 10:19

T = 10:00

Figure 5: Changes to group table[] due to an update.

update B update A update A
08:12 09:08 10:02

time

10:16
update E

group_table[1]:

time = 10:16;
total_wW = 0;
uplist-->(E, 10:16)-->(A, 10:02)-->NULL;

Group[1] = {A, B, C, D, E, F}; w = 3; W = 6

Current time = 10:20 T

= 10:20

Figure 6: Changes to group table[] due to a new broad-cast.

server also updates group table[].total wW, which keeps the
number of distinct objects that were most recently updated
between T , W L and T , w L. The maintenance of group

table[].total wW is for a fast group validity checking. If no
object was most recently updated during T , W L and T , w

L and Tlb > (T , W L), it means if there are any ob-jects in the
group updated since Tlb , their ids have been included in IR.
Notice that in GCORE the cache va-lidity checking is done
after the mobile computer rst invalidates its cache based on
IR, the most recent in-validation report. As a result, when a
just-woke-up mobile computer sends a group validity
checking to the server, it can ensure that those recently
updated hot data have already been invalidated in the
mobile computer's cache.

Continuing the example of Fig. 4 and 5, we show the
changes to group table[1] at time 10:20 when a new IR is
broadcasted in Fig. 6. Object B is now discarded from the
update history since group table[1] only keeps track of the

update history between 08:20 and 10:20 now. Also, group

table[1].tot wW becomes 0 now since object A has been again
updated at 10:02. Thus, the number of distinct objects most
recently up-dated between 08:20 and 09:20 is zero.

The server checks the validity of a group by exam-ining
whether or not all the objects updated since the mobile
computer becomes disconnected have been in-cluded in the
latest invalidation report IR. If yes, then the group can be
retained by the mobile com-puter. Otherwise, the entire
group is invalid. This can be achieved by rst checking if
group table[].time < Tlb. If yes, the group is valid since the
group is last updated before the mobile computer becomes
disconnected. If not, the server further checks if group

table[].total wW equals to 0 and Tlb > (T ,
W L). If yes, this group is also valid since the up-dated
object ids are all included in IR. Otherwise (either group

table[].tot wW is greater than zero or Tlb < (T , W L)), this
group is invalid.

3 Simulation model

In order to evaluate the performance of GCORE, an
eventdriven simulator was developed to model a server and a
mobile computer. In the simulation model, we assumed that
database objects are only updated in the server by transactions
and queries are read-only and are processed in the mobile
computer. If the referenced data objects are not cached in the
mobile computer, it sends the requested object ids to the server
and the server sends back the object data. The e ectiveness of
caching is measured by the communication bandwidth
requirement for query processing. This communication
requirement includes the receiving of the broadcast in-
validation reports, the uplink communication for va-lidity
checking and asking for missed objects, and the

Notation De nition (Default values)

D server database size (100,000 objects)
B mobile cache size (5000 objects)

u server transaction arrival rate, Poisson in
terarrival time (0.01 jobs/sec)

q mobile query arrival rate, Poisson interar
rival time (0.1 jobs/sec)

U mean objects updated by a transaction (5)
Q mean objects referenced by a query (20)

 reference skew by transactions (90%-10%)
G group size (100 objects)
w

 window for broadcast invalidation (10
intervals)

W update history maintained (60 intervals)
L length of a broadcast interval (20 seconds)
O object size (256 bytes)
Oid object id size (64 bits)
Gid group id size (64 bits)

08:00 08:20 08:40 09:00 09:20 09:40 10:00 10:20

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

T

 timestamp of the current broadcast invali
dation report

Tlb

 the timestamp of the latest broadcast in
validation report received by a mobile com-
puter before it went to sleep

Pdisc

 conditional probability of a disconnection
in the next broadcast interval given that a
mobile computer is active now (0.2)

Ldisc mean disconnection length (200 seconds)

Table 1: System and workload parameters.

downlink communication for sending the data to the mobile
computer. High bandwidth requirement means less e ective
caching and more energy consumption.

A total of D total objects are in the database. Of the D
objects, portion of them are hot update set, while (1,)
portion of them are cold update set. Data in the hot update
set are randomly chosen from the D objects. The number of
objects updated by a trans-action is uniformly distributed
between U=2 and 3U=2 objects, where U is the mean. Of the
data objects up-dated by a transaction, fraction of them are
from the hot update set, and the rest from the cold update
set. Update transaction arrival is a Poisson process with
 rate u .

In order to focus on the cache invalidation e ect, we assumed
that a cache miss is resulted only from inval-idation. It does not
result from a query referencing an object that is replaced by
another object. In other words, we assumed that all the queries
in a mobile com-puter reference a xed subset of objects that are
ini-tially cached. The cache size is B objects. These B objects
are randomly chosen from the D objects in the database. Some
of the cached objects may be invali-dated because they have
been updated by transactions in the server.

The objects referenced by a query are
randomly chosen from these B objects and the number of
objects referenced by a query is uniformly distrib-uted

 between Q=2 and 3Q=2, where Q is the mean. The probability

of a mobile computer becoming dis-

 connected in the next broadcast interval given that it
is active now is denoted as Pdisc. The length of discon-nection

 is uniformly distributed between Ldisc=2 and 3Ldisc=2, where
Ldisc is the mean. When a mobile computer is active, query
interarrival times are expo-nentially distributed with mean
1= q seconds. Queries are batched in QL and are not
processed until a mo-bile computer receives a broadcast
invalidation report. We accumulated the communication
costs for query processing in a mobile computer for a period
of time (50,000 broadcast intervals), and then compute its
av-erage bandwidth requirement. For the computation of
communication costs, the size of an object id is Oid bits and
the size of each object is O bytes. The size of a group id is
Gid . In the simulations, we assumed that O = 256 bytes, Oid

= 64 bits and Gid = 64 bits. The size of a timestamp is 256
bits. Notation and its de nition for all the simulation
parameters are summarized in Table 1. The default values

used in the simulations, if not otherwise speci ed, are
included in the parenthe -ses.

Note that broadcast invalidation requires communication
bandwidth every L seconds for all schemes even when a
mobile computer is disconnected. However, it consumes
energy for a mobile computer only when it is active. For the
no-checking scheme, the communi-cation costs for query
processing can be rather high both for uplink and downlink
costs resulted from cache misses, especially if the
disconnection length is longer than the broadcast
invalidation window. For all the caching schemes, there are
uplink costs due to a mo-bile computer requesting missed
objects in its cache. For the other checking schemes, the
uplink costs for cache validity checking are added to the
total band-width costs.

4 Simulation results

We compute the communication costs of a mobile com-puter,
including the costs of receiving the broadcast invalidation
reports, the uplink costs of checking the cache validity and
requesting missed objects, and the downlink costs of the
validity report and the data ob-jects due to cache misses. The
bandwidth requirement is the average of the communication
costs over 50,000 broadcast intervals. Since the bandwidth
requirement would be smaller if the mobile computer is often
dis-connected, we plotted the bandwidth requirement for 1000
queries. By doing this, the true e ectiveness of caching is
manifested in bandwidth requirement. Un-less otherwise speci
ed, the default values for most of the simulations are provided
in Table 1.

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

Figure 7: Impact of broadcast invalidation window size.

4.1 Four schemes

We examined the impact of w, relative to Ldisc , on the
bandwidth requirement. Fig. 7 shows the total bandwidth
requirement per 1000 queries for the four di erent schemes. In
this experiment, the mobile com-puter was disconnected
relatively infrequently, namely Pdisc = 0:1. (Sensitivity analysis
on Pdisc will be pre-sented next.) The mean disconnection length
Ldisc was 400 seconds, which is equivalent to 20 broadcast inter-
vals. Since disconnection length was uniformly distrib-
uted between Ldisc=2 and 3Ldisc=2, a mobile computer may
power o for a period of between 10 and 30 broad- cast
intervals. For GCORE and the simple grouping schemes,
the group size was 100 objects.

Because the broadcast invalidation cost is propor-tional to
the number of objects included in the inval-idation report, it
increases as w increases for all four schemes. However, if w is
greater than the disconnec-tion length, all cached objects can
be validated with the invalidation report IR, and no checking is
ever needed. Therefore, if w 30 broadcast intervals, all four
schemes require exactly the same communication bandwidth.
This is because the maximum disconnec-tion length is 30
broadcast intervals. For the cases where w < 30 broadcast
intervals, both GCORE and simple grouping require signi
cantly less bandwidth than simple checking and no checking
schemes. Obvi-ously, validity checking helps retain some of
the cached objects and thus substantially reduces bandwidth re-
quirements. Even with a simple checking scheme where the
uplink cost can be substantial, the overall cache ef fectiveness
can still be improved.

If the bene ts of retaining cached objects are not re-alized by
queries, e.g., a mobile computer may be dis-connected most of
the time, it may not pay o to per-form validity checking,
especially for the simple check-ing scheme. Here, we examine
the impact of Pdisc,
requirement for query processing.

the conditional probability of a mobile computer
disconnected in the next broadcast interval given that it is
active now. Fig. 8 shows the total bandwidth re-quirement
for the four di erent caching schemes. For this experiment,
w was 10 broadcast intervals (or 200 seconds) and Ldisc was
400 seconds. Namely, a dis-connection can last for between
200 seconds and 600 seconds. Thus, the rst invalidation
report a mobile computer receives after a reconnection does
not con-tain enough information for validating cached
objects. It must either discard the entire cache, as in the case
of no checking scheme, or check the

 validity of cached objects with the server. As indicated from
Fig. 8, as Pdisc increases the over-head of

 cache validity checking starts to outweigh the
bene t of retaining cached objects. This is particularly true for
the case of simple checking, as it needs high uplink bandwidth
to send all the object ids. In this gure, simple checking is bene
cial only for the case of very small Pdisc. Fig. 8 clearly illustrates
the impor-tance of reducing the uplink communication
overhead for cache validity checking. Both GCORE and simple
grouping have much smaller uplink costs, and as a re-sult can
still be better than the no checking

 scheme for
a larger Pdisc . But, as a mobile computer is discon-nected

 most of the time, it does not pay to check the
validity of cached objects since they are not likely to be
reused anyway. In such cases, it is better to just use the no
checking scheme.

4.2 GCORE and simple grouping

For both simple grouping and GCORE, group size is an
important design parameter. With a larger group size, less
uplink bandwidth is needed. However, it be-comes more likely
that the entire group or most of it may be invalidated since more
objects in the group are

ISSN: 4567-7860

JOURNAL OF ELECTRICAL AND ELECTRONINS

ENGINEERING

VOL 2 ISSUE 1 JAN 2015 PAPER 3

Figure 9: Impact of group size on bandwidth.

likely to be updated. Fig. 9 shows the bandwidth requirements
of GCORE and simple grouping for vari-ous group sizes and
update rates. In general, as group size increases, the uplink cost
decreases but the down-link cost increases. Thus, the total
bandwidth rst de-creases and then increases as group size
increases. For the cases with low update rates (such as those
with u = 0:01 in Fig. 9), the advantage of GCORE over simple
grouping increases as group size increases. How-ever, it may
not be true for the cases with high update rates. This is because
GCORE can retain the cold up-date set of a group only if the
updated objects of the group are all captured in the most recent
invalidation report. If a group contains a large number of
objects and the update rate is high, then it is less likely that all
the updated objects will be captured in IR.

5 Summary

We have presented an energy-e cient caching scheme, called
grouping with cold update-set retention GCORE, that allows a
mobile computer to disconnect for saving energy, but still
retains most of the caching bene ts. An e cient implementation
of GCORE was presented in the paper. It uses a simple data
structure to facilitate the dynamic exclusion of recently updated
objects (likely to belong to the hot update set) from a group so
that the rest of the group (likely to belong to the cold update
set) can be retained in the cache. Upon waking up, a mobile
computer checks its cache validity with the server at a group
level to save uplink costs. The server determines that a group
is valid if all the recently updated objects have already been
included in the most recently broadcasted invalidation report.

Simulations were conducted to evaluate the perfor-mance of
GCORE. We compared GCORE with a no checking scheme, a
simple checking scheme and a sim-
ple grouping scheme. The results show that, compared with no
checking and simple checking, both simple grouping and
GCORE requires much less bandwidth for processing queries,
particularly if a mobile computer is occasionally disconnected
for a long period of time and most of the data objects are
infrequently updated. Lower bandwidth requirement also
consumes less en-ergy and thus more energy e cient.

References

[1] T. Imielinski and B. R. Badrinath, \Querying in
highly mobile distributed environments," in Proc. of
Very Large Data Bases, pp. 41{52, 1992.

[2] T. Imielinski and B. R. Badrinath, \Mobile wire-less

computing," Communications of the ACM, vol. 37,
no. 10, pp. 18{28, Oct. 1994.

[3] T. Imielinski, S. Viswanathan, and B. R. Badri-nath,

\Energy e cient indexing on air," in Proc. of ACM
SIGMOD, pp. 25{36, 1994.

[4] D. Barbara and T. Imielinski, \Sleepers and

workaholics: Caching in mobile distributed
environments," in Proc. of ACM SIGMOD, pp. 1{12,

1994.

[5] R. H. Katz, \Adaptation and mobility in wireless

information systems," IEEE Personal
Communications, pp. 6{17, First Quarter 1994.

[6] A. Acharya and B. R. Badrinath, \Checkpointing

distributed applications on mobile computers," in
Proc. of Int. Conf. on Parallel and Distributed
Information Systems, pp. 73{80, 1994.

[7] P. Krishna, N. H. Vaidya, and D. K. Pradhan, \Location

management in distributed mobile en-vironments," in
Proc. of Int. Conf. on Parallel and Distributed
Information Systems, pp. 81{88, 1994.

[8] Y. Huang and O. Wolfson, \Object allocation in
distributed databases and mobile computers," in
Proc. of Int. Conf. on Data Engineering, pp. 20{ 29,

1994.

[9] Y. Huang, P. Sistla, and O. Wolfson, \Data replication

for mobile computers," in Proc. of ACM SIGMOD,
pp. 13{24, 1994.

[10] R. Alonso and H. Korth, \Database system issues in

nomadic computing," in Proc. of ACM SIG-MOD,
pp. 388{392, 1993.

[11] B. R. Badrinath and T. Imielinski, \Replication and

mobility," in Proc. of the 2nd Workshop on the
Management of Replicated Data, 1992.

