

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Access time based on initial head position in

disk scheduling

Mr. Naresh Janwa

M.Tech. Scholar

Computer Science & Engineering

Mewar University , Gangrar

Chittorgarh - 312901

Naresh.janwa@gmail.com

Mr. B.L. Pal

Asst. Professor

Computer Science & Engineering

Mewar University , Gangrar

Chittorgarh - 312901

Contact2bl@rediffmail.com

Abstract –As we know that most of the job in computer

is performed on the basis of job scheduling algorithm

by disk access. The basic parameter of all these

algorithm is head movement. The criteria for best

algorithm is minimum head movement to perform the

same job, whether algorithm used to perform job is

LOOK or C-LOOK or C-SCAN or SCAN or SSTF or

FIFO. Most jobs in computer depend heavily on disk

access. But now, question arises “How to improve disk

access time?” This can be done by scheduling the

request for disk access for operating system. If the

desired disk drive and controller are available the

access can be immediately. in any system when the drive

is operating, the disk is rotates at constant speed. To

read or write, the head must be positioned at the

desired track and at the beginning of the desired sector

on that track. Track selection involves moving the head

in a movable-head system.

The performance of disk schedulers is affected

by many factors such as initial head position,

workloads, file systems, and disk systems. Disk

scheduling performance can be improved by positioning

the Read/Write Heads at appropriate position.

Scheduler performance tuning is mostly done manually.

To automate this process, we propose initial head

position in disk scheduling schemes. We conducted

experiments to compare the performance and overhead

of algorithms.

In this paper, we are going to study or analyze

FIFO, SSTF or SCAN algorithm on the basis of

increasing the range of head position from 0 - 200 to 0 -

500 because all these algorithms are analyzed

previously on the basis of range from 0- to 200 whether

it is done by using IBM’s disk or HP disk.

Keywords or Index Terms: initial head

position, access time, rotational delay,

spindle

I. INTRODUCTION

In operating systems, seek time is very important.

Since all device requests are linked in queues, the

seek time is increased causing the system to slow

down. Disk Scheduling Algorithms are used to

reduce the total seek time of any request [1].

If the desired disk drive and controller are available,

the request can be serviced immediately. If the drive

or controller is busy, any new requests for service

will be placed on the queue of pending requests for

the drive, for a multi programming system with many

process, the disk queue may often have several

pending request. Thus, when one request is

completed the operating system chooses which

pending request to service next. This is called

scheduling. When designing an operating system, a

programmer must consider which scheduling

algorithm will perform best for the use the system is

going to see. There is no universal “best” scheduling

algorithm, and many operating systems use extended

or combinations of the scheduling algorithms above

[2].

When some data has to be write into or read

from the disk, it issues a system call to the operating

system. The I/O devices are free the request is

serviced, other wise such a request is placed on the

separate queue for servicing later. Disk scheduling

involves a careful examination of pending requests to

determine the most efficient way to service these

requests. A disk scheduler examines the positional

relationship among waiting requests, then reorders

the queue so that the requests will be serviced with

minimum seek. The purpose of the study is to obtain

the best scheduling algorithm based on the seek time,

rotation time and transfer time for moveable head

disks. Keeping in view an attempt has been made to

design a technique for optimizing the performance of

disk scheduling algorithms. it takes access time

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-6 | June,2015 | Paper-6 32

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

which is generated using seek time, rotation time and

transfer time, as the request of cylinder numbers,

current position of read/write head as inputs. On the

basis of these inputs, total head movement of each

disk scheduling algorithm is calculated under various

loads. Disk Performance Parameters

•If the queue has only one outstanding request

 –All scheduling algorithms behave as FCFS

•Requests for disk service can be affected by the file-

allocation method

•Access Time= Seek time+ Rotational latency

Where

-Seek time is the time takes to position the head at the

desired track

-Rotational latency is the time takes for the beginning

of the sector to reach the head

-Transfer Time is the time taken to transfer the data

Disk bandwidth= total transferred bytes / total time

Where total time is the time between the first request

for service and the completion of the last transfer

The OS is responsible for using h/w efficiently for

the disk drives, this means having a fast access time

and more disk bandwidth [3].

The simplest algorithm is to service requests in the

order that they arrive, or First Come First Served

(FCFS). This algorithm has poor performance for all

but the lightest of loads, since it wastes a lot of time

moving between areas on the disk relative to the time

spent actually transferring data. Better is to scan the

request queue for the request that is nearest to where

the head is positioned and process that next.

Traditionally, “nearest” is calculated from the

difference in cylinder numbers, and this technique is

known as Shortest Seek Time First (SSTF).During

periods of very high load, and particularly when

many requests are arriving for the same. area on the

disk, the arm may “stick” in one region, leaving

others requests waiting for a long time. This is known

as the starvation problem. Even in the absence of

complete starvation, this phenomenon increases the

service time variance [4]. The SCAN algorithm

sweeps back and forth across the disk stopping at

each cylinder with pending requests. A variation of

SCAN is to sweep in only one direction, and when

the end of the disk is reached, to seek back to the

beginning.

 SCAN also suffers from starvation, but to a less than

SSTF. Various authors have proposed adaptations to

overcome this problem. The performance of FCFS,

SSTF and SCAN has been extensively studied in

recent years.

II. DISK STRUCTURE

•Disk drives are addressed as large 1-dimensional

arrays of smallest unit of transfer.

•The 1-dimensional array is mapped into the sectors

of the disk sequentially:•The first sector (Sector 0) of

the first track on the outermost cylinder.

•Mapping proceeds in order through that track, then

the rest of the tracks in that cylinder, and then

through the rest of the cylinders from outermost to

innermost.

Allocation methods are for effective disk space

utilization with contiguous allocation the disk

movement is minimal.

 Modern disk drives have the ability to queue

incoming requests and to service them in an out of

order fashion. In the disk scheduling problem we are

given at any given moment a set of queued requests

and we wish to service them in an order which

minimizes the access time or equivalently, in an order

which maximizes the number of requests serviced per

time unit. The disk scheduling problem involves

reordering the disk requests in the disk queue so

that the disk requests will be serviced with the

minimum mechanical motion. If the OS sends a

batch of requests to the controller

So why does accessing such a simple device take

such a considerable amount of time? This problem

arises because accessing a specific sector on the disk

requires that the read/write head move to the correct

track (seek time) and that the platter rotate until the

desired sector is beneath the head (rotational latency).

Only after this overhead has been paid can the actual

transfer of data begin. The amount of time required to

physically move the head and the platter is quite

significant and can generally only be decreased to a

certain point.

III. BACKGROUND AND RELATED

PRIOR WORK

In this section, we will briefly introduce the access

time based on initial head position in disk scheduling

and discuss previous related work.

In this section we first survey information about

disks. Next, we summarize the most effective

approaches for disk-scheduling. We conclude the

section Factors affecting Disk-Scheduling Algorithm

which provide a detailed treatment of the algorithmic

techniques which we used for optimization. Although

there have been constant stream of proposed

alternative massive storage technologies, magnetic

disks have dominated secondary storage since the

mid sixties [5,6]. Detailed description of magnetic

disks can be found in many books. Relative

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-6 | June,2015 | Paper-6 33

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

comparison of disks with other massive storage

alternatives is given in many books. The early disk-

related research in operating systems has been

focused on development of scheduling algorithms for

efficient use of disks in time-shared manner . Later,

operating systems researchers developed new disk

scheduling algorithms for new platforms assuming

increasingly more realistic and complex disk models

[7]. There are surprisingly few detailed quantitative

descriptions of mechanical, electrical, and magnetic

components of a disk.

Several groups of authors proposed Optimization

Systems approaches with relatively little impact of

initial head position on algorithm performance. But

this paper provides solid starting points to study key

performance disk design. The resulting technique

explores the optimization by allowing the head

moves from appropriate initial state. Since this paper,

has been a favorite approach for the optimization of

access time due to its simple implementation and

wide applicability, the proof of optimality and the

extensive empirical performance evaluation studies.

Most traditional disk scheduling algorithms are

designed to reduce disk-seek time and increase its

throughput. FCFS performs operations in order the

job arrives. However, the performance of FCFS

algorithm is poor. SSTF reduces the total seek time

compared to FCFS. The disadvantage of SSTF is

starvation that is the R/W head stays in one area

of the disk if very busy. These algorithms are not

suitable to be applied directly on a real-time system

[8].

In the SCAN algorithm, the disk head starts at

one end of the disk, and moves toward the centre

of the disk, servicing requests as it reaches each

cylinder, until it gets to the spindle. From this end,

the direction of head movement is reversed and

servicing continues. The head continuously scans

back and forth across the disk. C-SCAN

scheduling is a variant of SCAN designed to

provide uniform wait time. Like SCAN, C-SCAN

moves the head from one end of the disk to the

spindle, servicing the requests along the way. When

the head reaches the spindle, it immediately returns to

the beginning of the disk, without servicing any

requests on return trip. LOOK algorithm is also a

variant of SCAN. In LOOK the disk head does not

move inward or outward when there is no request in

that direction. LOOK performs better than SCAN

when load is low but it is equivalent to SCAN

when the load is high. A variant of LOOK

scheduling is C-LOOK. C-LOOK moves the head in

one direction from its current head position, after

serving all the requests in current direction, disk head

starts to serve the first request in other end without

serving the requests in return trip. It provides more

uniform wait time for the requests.

Disk Access time = Seek time + Rotational Latency

This traveling head time should be minimized

Throughput - the number of disk requests that are

completed in some period [9,10].

Fairness - some disk requests may have to wait a long

time before being served

IV. OUR PROPOSED SCHEME

Let a disk head is initially located at different -

different location to analyze scheduling algorithms.

 Assume a disk with 500 tracks and that the

disk request queue has random requests in it.

 8 Requests in work queue.

 Maximum numbers of cylinders are 5.

The requested tracks (received by the disk scheduler)

are in the sequence of:

55, 99, 300, 105, 200, 400, 499, 1.

Figure 1 when initial head=1

Figure 1 shows that when initial head at 1 then in

FCFS total head movement will be 1386 and in SSTF

total head movement will be 498 and in SCAN total

head movement will be 500.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-6 | June,2015 | Paper-6 34

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Figure 2 when initial head=55

Figure 2 shows that when initial head at 55 then in

FCFS total head movement will be 1332 and in SSTF

total head movement will be 942 and in SCAN total

head movement will be 554.

Figure 3 when initial head=200

Figure 3 shows that when initial head at 200 then in

FCFS total head movement will be 1477 and in SSTF

total head movement will be 697 and in SCAN total

head movement will be 699.

Figure 4 shows that when initial head at 498 then in

FCFS total head movement will be 1775 and in SSTF

total head movement will be 499 and in SCAN total

head movement will be 997.

Figure 4 when initial head=498

V. REDUCING ACCESS TIME

THROUGH REDUCTION OF HEAD

MOVEMENT

Modern disks spend almost twice less power in idle

mode than in seek mode. In order to reduce seek

time; system-level designer has to carefully arrange

data assignment to tracks of disk as well as to

properly order data access pattern. Therefore, task-

level scheduling is most relevant synthesis task for

exploring this trade-off. The advantage of this

method is that no hardware alternations are required.

However, as it is shown in this paper once the seek

time is reduced it is usually more beneficial to reduce

disk read/write so that the voltage and the spindle

motor speed can be reduced than to exploit this trade-

off [8].

VI. PERFORMANCE COMPARISON OF

ALGORITHMS

Here Tested Parameter is initial head position.

•To compare various schemes, consider a disk head

is initially located at different - different location. •
–Assume a disk with 500 tracks and that the disk

request queue has random requests in it.

–8 Requests in work queue.

–Maximum number of cylinders are 5.

•The requested tracks, in the order received by the

disk scheduler are

–55, 99, 300, 105, 200, 400, 499, 1.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-6 | June,2015 | Paper-6 35

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Scheduling THM

when

IHP=1

THM

when

IHP=55

THM

when

IHP=200

THM

when

IHP=498

FCFS 1386 1332 1477 1775

SSTF 498 942 697 499

SCAN 500 554 699 997

Table 1 TMH when IHP at different locations

Where THM is Total Head Movement and IHP is

Initial Head Position.

Experimental Results for Performance based on

Initial Head Position is that SSTF gives the optimized

result when Initial Head Position is 1. So to

Maximize Disk Throughput with Guaranteed

Requirements of Initial Head Position is 1. it is the

our aim for Proposed Scheme. Conventional

Approaches gives the different - different result based

on Initial Head Position

VII. CONCLUSION

As we know that our analysis is based on increasing the

range of head position from 0-200 to 0- 500. So, our result

is different. As per our analysis SSTF is best algorithm

among FIFO, SSTF and SCAN because SSTF takes

minimum head movement to do the same job while others

are taking more head movement whether it is SCAN or

FIFO, It does not matter and scheduling is affected by

initial head position strategy.

ACKNOWLEDGMENTS

The authors wish to thanks Mr. shiv kumar, Mr.

Rohit Maheshwari professors of CS department for

the insightful comments and discussions.

 Besides our advisor, we

would like to thank the rest of my Friends and well

wisher: Dr. D.B. Ojha and others, for their

encouragement, insightful comments, and hard

questions. Last but not the least; we would like to

thank my friend gaurav kakhani supporting me

spiritually to write this paper.

REFERENCES

[1]. A. Silberschatz, P. B. Galvin and G. Gagne,

“Operating System Principles”, 7th Edn., John Wiley and

Sons, 2008, ISBN 978-81-265-0962-1.

[2]. Andrew S. Tanenbaum, Modern Operating system

Concept 3rd Edition, PHI Learning.

[3]. Dhananjay M. Dhamdhere, Operating System: A

Concept Based Approach 3rd Edition, Tata McGraw - Hill

Education

[4]. H. M. Deitel, “Operating Systems”, 2nd Edn., Pearson

Education Pte. Ltd., 2002, ISBN 81-7808-035-4.

[5]. W. Stallings, “Operating Systems”, 4th Edn., Pearson

Education Pte. Ltd., 2007, ISBN 81-7808-503-8.

[6]. Z. Dimitrijevic, R. Rangaswami and E. Y. Chang,

“Support for Preemptive Disk Scheduling”, IEEE

Transactions on computers, Vol. 54, No. 10, Oct 2005.

[7]. C. Tsai, T. Huang, E. Chu, C. Wei and Y. Tsai, “An

Efficient Real-Time Disk-Scheduling Framework with

Adaptive Quality Guarantee”, IEEE Transactions on

computers, Vol. 57, No. 5, May 2008.

 [8]. John P Hayes “Computer Architecture” McGraw-Hill,

1998 third edition ISBN -0070273553, 9780070273559

 [9]. H. Kopetz, Real-time systems: design principles for

distributed embedded applications, 2nd ed. Springer

[10.] Sourav Kumar Bhoi, Department of CSE NIT,

Rourkela Design and Performance Evaluation of an

Optimized Disk Scheduling Algorithm (ODSA),

International Journal of Computer Applications (0975 –

8887) Volume 40– No.11, February 2012

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-6 | June,2015 | Paper-6 36

