

15

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

Application of Genetic Algorithm to the Problem of Control

System

Veena Kumari Adil 1, Dr.Sanjay Kumar Singhai2
1 Ph.D.Scholar, Dr C.V. Raman University, Kargi Road , Kota (C.G.)

E-mail: veenaverma67@gmail.com
2Associate Professor & Head (EED), G.E. C. Bilaspur (C.G.)

E-mail: singhai_sanjay@yahoo.com

1. Introduction

Genetic algorithm (GA) is stochastic global adaptive search optimization technique based on

the mechanisms of natural selection. GA was first suggested by John Holland and his

colleagues in 1975. It mimics the metaphor of natural biological evolution [1]. GA has been

recognized as an effective and efficient technique to solve optimization problems. Compared

with other optimization techniques, such as simulating annealing and random search method

techniques, GA is superior in avoiding local minima, which is a significant issue in the case

of nonlinear systems. GA operates on a population of potential solutions applying the

principle of survival of the fittest to produce successively better approximations to a solution.

At each generation of a GA, a new set of approximations is created by the process of

selecting individuals according to their level of fitness in the problem domain and

reproducing them using operators borrowed from natural genetics. This process leads to the

evolution of populations of individuals that are better suited to their environment than the

individuals from which they were created, just as in natural adaptation. GA has been shown

to be an effective strategy in the off-line design of control systems by a number of

practitioners. For example, Krishna Kumar and Goldberg [2] and Bramlette and Cusin [3]

have demonstrated how genetic optimization methods can be used to derive superior

controller structures in aerospace applications in less time (in terms of function evaluations)

than traditional methods such as LQR and Powell’s gain set design. Porter and Mohamed [4]

have presented schemes for the genetic design of multivariable flight control systems using

Eigen structure assignment, whilst others have demonstrated how GAs can be used in the

selection of controller structures [5]. GA starts with an initial population containing a number

of chromosomes where each one represents a solution of the problem, the performance of

which is evaluated by a fitness function. Basically, GA consists of three main stages:

Selection, Crossover and Mutation. The application of these three basic operations allows the

creation of new individuals, which may be better than their parents. From the above

discussion, it can be seen that the GA differs substantially from more traditional search and

optimization methods. The four most significant differences are:

 GAs search a population of points in parallel, not a single point.

 GAs do not require derivative information or other auxiliary knowledge; only the

objective function and corresponding fitness levels influence the directions of search.

 GAs use probabilistic transition rules, not deterministic ones.

 GAs work on an encoding of the parameter set rather than the parameter set itself

(except in where real-valued individuals are used).

It is important to note that the GA provides a number of potential solutions to a given

problem and the choice of final solution is left to the user. In cases where a particular problem

does not have one individual solution, for example a family of Pareto-optimal solutions, as is

the case in multi objective optimization and scheduling problems, then the GA is potentially

mailto:singhai_sanjay@yahoo.com

16

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

useful for identifying these alternative solutions simultaneously. This algorithm is repeated

for many generations and finally stops when reaching individuals that represent the optimum

solution to the problem. The GA architecture is shown in Fig.

 Genetic Algorithm Architecture

2. The MATLAB GA Toolbox

Though there exist many noble public-domain genetic algorithm packages, such as

GENESYS [6] and GENITOR [7], none of these provide an atmosphere that is directly

compatible with existing tools in the control domain. The MATLAB Genetic Algorithm

Toolbox [8] aims to make GAs open to the control engineer within the framework of an

existing CACSD package. This allows the retention of existing modelling and simulation

tools for building objective functions and allows the user to make direct comparisons

between genetic methods and traditional procedures.

2.1 Data Structures

 MATLAB basically supports only one data type, a rectangular matrix of real or complex

numeric elements.The main data structures in the GA Toolbox are chromosomes, phenotypes,

objective function values and fitness values. The chromosome structure stores an entire

population in a single matrix of size Nind × Lind , where Nind is the number of individuals and

Lind is the length of the chromosome structure. Phenotypes are stored in a matrix of

dimensions Nind × Nvar where Nvar is the number of decision variables. An Nind× Nobj matrix

17

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

stores the objective function values, where Nobj is the number of objectives. Finally, the

fitness values are stored in a vector of length Nind. In all of these data structures, each row

corresponds to a particular individual.

2.2 Toolbox Structure

The GA Toolbox uses MATLAB matrix functions to build a set of versatile routines for

implementing a wide range of genetic algorithm methods. In this section we outline the major

procedures of the GA Toolbox.

Population representation and initialisation: crtbase, crtbp, crtrp.

The GA Toolbox supports binary, integer and floating-point chromosome representations.

Binary and integer Populations may be initialised using the Toolbox function to create binary

populations, crtbp. An additional function, crtbase, is provided that builds a vector describing

the integer representation used. Real-valued populations may be initialised using crtrp.

Conversion between binary and real-values is provided by the routine bs2rv that also supports

the use of Gray codes and logarithmic scaling.

Fitness assignment: ranking, scaling.

The fitness function transforms the raw objective function values into non-negative figures of

merit for each individual. The Toolbox supports the offsetting and scaling method of

Goldberg [9] and the linear-ranking algorithm of Baker [10]. In addition, non-linear ranking

is also supported in the routine ranking.

Selection functions: reins, rws, select, sus.

These functions select a given number of individuals from the current population, according

to their fitness, and return a column vector to their indices. Currently available routines are

roulette wheel selection [9], rws, and stochastic universal sampling [11], sus. A high-level

entry function, select, is also provided as a convenient interface to the selection routines,

particularly where multiple populations are used. In cases where a generation gap is required,

i.e. where the entire population is not reproduced in each generation, reins can be used to

effect uniform random or fitness-based re-insertion [9].

Crossover operators: recdis, recint, reclin, recmut, recombin, xovdp, xovdprs, xovmp,

xovsh, xovshrs, xovsp, xovsprs

The crossover routines recombine pairs of individuals with given probability to produce

offspring. Single-point, double-point [12] and shuffle crossover [13] are implemented in the

routines xovsp, xovdp and xovsh respectively. Reduced surrogate [13] crossover is supported

with both single-, xovsprs, and double-point, xovdprs, crossover and with shuffle, xovshrs. A

general multi-point crossover routine, xovmp, that supports uniform crossover [14] is also

provided. To support real-valued chromosome representations, discrete, intermediate and line

recombination are supplied in the routines, recdis, recint and reclin respectively [15]. The

routine recmut performs line recombination with mutation features [15]. A high-level entry

function to all the crossover operators supporting multiple subpopulations is provided by the

function recombin.

18

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

Mutation operators: mut, mutate, mutbga

Binary and integer mutation are performed by the routine mut. Real-value mutation is

available using the breeder GA mutation function [15], mutbga. Again, a high-level entry

function, mutate, to the mutation operators is provided.

Multiple subpopulation support: migrate

The GA Toolbox provides support for multiple subpopulations through the use of high-level

genetic operator functions and a function for exchanging individuals amongst subpopulations,

migrate. A single population is divided into a number of subpopulations by modifying the

data structures used by the Toolbox routines such that subpopulations are stored in

contiguous blocks within each data element. The high-level routines, such as select and reins,

operate independently on each subpopulation contained in a data structure allowing each

subpopulation to evolve in isolation from the others. Based on the Island or Migration model

[16], migrate allows individuals to be transferred between subpopulations. Uni- and bi-

directional ring topologies as well as a fully interconnected network are selectable via option

settings as well as fitness-based and uniform selection and re-insertion strategies.

2.3 A Simple GA in MATLAB

Fig.1 shows the MATLAB code for a Simple GA. The first few lines of the code set the

parameters that the GA uses, such as the number and length of the chromosomes, the

crossover and mutation rates, the number of generations and, in this case, the binary

representation scheme. Next, an initial uniformly distributed random binary population,

Chrom, is created using the GA Toolbox function crtbp. The objective function, objfun, is

then evaluated to produce the vector of objective values, ObjV. Note that as we do not need

the phenotypic representation inside the GA, the binary strings are converted to real values

within the objective function call.

The initialisation complete, the GA now enters the generational loop. First, a fitness vector,

FitnV, is determined using the ranking scheme of Baker [11]. Visualisation and preference

articulation can be incorporated into the generational loop by the addition of extra functions.

In this example, the routine plotgraphics displays the performance of the current best

controller allowing the user to asses the state of the search. Individuals are then selected from

the population using the stochastic universal sampling algorithm, sus, with a generation gap,

GGAP = 0.9. The 36 (GGAP × NIND) selected individuals are then recombined using single-

point crossover, xovsp, applied with probability XOV = 0.7. Binary mutation, mut, is then

applied to the offspring with probability MUTR = 0.0175, and the objective function values

for the new individuals, ObjVSel, calculated. Finally, the new individuals are re-inserted in

the population, using the Toolbox function reins, and the generation counter, gen,

incremented.

The GA terminates after MAXGEN iterations around the generational loop. The current

population, its phenotypic representation and associated cost function values remain in the

users workspace and may be analysed directly using MATLAB commands.

19

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

LIND = 15; % Length of individual vars.

NVAR = 2; % No. of decision variables

NIND = 40; % No. of individuals

GGAP = 0.9; % Generation gap

XOV = 0.7; % Crossover rate

MUTR = 0.0175; % Mutation rate

MAXGEN = 30; % No. of generations

 % Binary representation scheme

FieldD = [LIND LIND; 1 1; 1000 1000; 1 1; 0 0; 0 0; 0 0];

% Initialise population

Chrom = crtbp(Nind, Lind*NVAR) ; % Create binary population

ObjV = objfun(bs2rv(Chrom, FieldD)) ; % Evaluate objective fn.

Gen = 0 ; % Counter

% Begin generational loop

while Gen < MAXGEN

 % Assign fitness values to entire population

 FitnV = ranking (ObjV) ;

 % Visualisation

 plotgraphics

 % Select individuals for breeding

 SelCh = select (’sus’, Chrom, FitnV, GGAP) ;

 % Recombine individuals (crossover)

 SelCh = recombin(’xovsp’, SelCh, XOV) ;

 % Apply mutation

 SelCh = mut(SelCh, MUTR) ;

 % Evaluate offspring, call objective function

 ObjVSel = objfun(bs2rv(SelCh, FieldD)) ;

 % Reinsert offspring into population

 [Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel) ;

 % Increment counter

 Gen = Gen+1;

end

% Convert Chrom to real-values

Phen = bs2rv (Chrom, FieldD) ;

 Figure 1: MATLAB Code for a Simple GA

3. Applications and Further Developments

The GA Toolbox has been beta-tested at approximately 30 sites world-wide in a wide range

of application areas

including:

 • parametric optimization • multiobjective optimization

 • controller structure selection • nonlinear system identification

 • mixed-mode modelling • neural network design

 • real-time and adaptive control • parallel genetic algorithms

 • fault identification • antenna design

20

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

In future releases we plan to incorporate support for multi objective optimization. Multi

Objective GAs (MOGAs) evolve a population of solution estimates thereby conferring an

immediate benefit over conventional MO methods. Fonseca and Fleming [17] have

demonstrated how, using rank-based selection and niching techniques, it is feasible to

generate populations of non-dominated solution estimates without combining objectives in

some way. This is advantageous because the combination of non-commensurate objectives

requires precise understanding of the interplay between those objectives if the optimization is

to be meaningful. The use of rank-based fitness assignment permits different non-dominated

individuals to be sampled at the same rate thereby according the same preference to all

Pareto-optimal solutions. Because MOGAs are susceptible to unstable converged

populations, due to the potential for very different genotypes to result in non-dominated

individuals, a particular problem is the production of lethals when fit members of the

population are mated. The search then becomes inefficient and the GA is likely to converge to

some suboptimal solution. In general, a combination of mating restriction, niche formation

and redundant coding may be appropriate.

4. Concluding Remarks

Together with MATLAB and SIMULINK, the GA Toolbox described in this paper presents a

aware and integrated environment for the control engineer to experiment with and apply GAs

to tasks in control systems engineering [18],[19],[20],[21]. Whilst the GA Toolbox was

developed with the emphasis on control engineering applications, it should prove equally as

useful in the general field of GAs, particularly given the range of domain-specific toolboxes

available for the MATLAB package.

6. References

[1] J. Holland, Adaptation in Natural and Artificial Systems, The University of Michigan Press, Ann

Arbor, 1975.

[2] K. Krishnakumar and D. E. Goldberg, “Control System Optimization Using Genetic Algorithms”,

Journal of Guidance, Control and Dynamics, Vol. 15, No. 3, pp. 735-740, 1992.

[3] M. F. Bramlette and R. Cusin , “A Comparative Evaluation of Search Methods Applied to

Parametric Design of Aircraft”, Proc. ICGA 3, pp213-218, 1989.

[4] B. Porter and S. S. Mohamed, “Genetic Design of Multivariable Flight-Control Systems Using

Eigenstructure Assignment”, Proc. IEEE Conf. Aerospace Control Systems, 1993.

[5] A. Varsek, T. Urbacic and B. Filipic, “Genetic Algorithms in Controller Design and Tuning”,

IEEE Trans. Sys. Man and Cyber., Vol. 23, No. 5, pp1330-1339, 1993.

[6] J. J. Grefenstette, “A User’s Guide to GENESIS Version 5.0”, Technical Report, Navy Centre for

Applied Research in Artificial Intelligence, Washington D.C., USA, 1990.

[7] D. Whitley, “The GENITOR algorithm and selection pressure: why rank-based allocations of

reproductive trials is best,” in Proc. ICGA 3, pp. 116-121, 1989.

[8] A. J. Chipperfield, P. J. Fleming and C. M. Fonseca, “Genetic Algorithm Tools for Control

Systems Engineering”, Proc. Adaptive Computing in Engineering Design and Control, Plymouth

Engineering Design Centre, 21-22 September, pp. 128-133, 1994.

21

ISSN-3785 - 0855

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

VOL 2 ISSUE 12 November 2015 Paper 3

[9] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison

Wesley Publishing Company, January 1989.

[10] J. E. Baker J, “Adaptive Selection Methods for Genetic Algorithms”, Proc. ICGA 1, pp. 101-111,

1985.

[11] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm”, Proc. ICGA 2, pp. 14-

21, 1987.

[12] L. Booker, “Improving search in genetic algorithms,” In Genetic Algorithms and Simulated

Annealing, L. Davis (Ed.), pp 61-73, Morgan Kaufmann Publishers, 1987.

[13] R. A. Caruana, L. A. Eshelman and J. D. Schaffer, “Representation and hidden bias II:

Eliminating defining length bias in genetic search via shuffle crossover”, In Eleventh Int. Joint Conf.

on AI, Sridharan N. S. (Ed.), Vol. 1, pp 750-755, Morgan Kaufmann, 1989.

[14] G. Syswerda, “Uniform crossover in genetic algorithms”, Proc. ICGA 3, pp. 2-9, 1989.

[15] H. Mühlenbein and D. Schlierkamp-Voosen, “Predictive Models for the Breeder Genetic

Algorithm”, Evolutionary Computation, Vol. 1, No. 1, pp. 25-49, 1993.

[16] C. B. Petty, M. R. Leuze. and J. J. Grefenstette, “A Parallel Genetic Algorithm”, Proc. ICGA 2,

pp. 155-161, 1987.

[17] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiple Objective Optimization:

Formulation, Discussion and Generalization”, Proc. ICGA 5, pp. 416-423, 1993.

[18] M. Georges-Schleuter, “Comparison of Local Mating Strategies in Massively Parallel Genetic

Algorithms”, In Parallel Problem Solving from Nature 2, R.Männer and B. Manderick, (Eds.), pp.

553-562, Amsterdam: North-Holland,1992.

[19] Mohd Sazli Saad, Hishamuddin Jamaluddin and Intan Zaurah Mat Darus, “Implementation of

PID Controller Tuning Using Differential Evolution And Genetic Algorithms” ICIC International, vol

8, no 11, pp 7761-7779, Nov 2012

[20] Rabigh, Saudi Arabia and Shebin El-kom, Egypt “Genetic Tuned PID Controller Based Speed

Control of DC Motor Drive”, International Journal of Engineering Trends and Technology (IJETT) –

Volume 17 Number 2 – Nov 2014

[21] R.Essakiraj, K.Preetham Rengarajan, S.Visakan, “Speed Control of Induction Machines Using

GA Based PID Controller”, MEJSR 23,pp164-169, Chennai, India, 2015

