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1. Introduction 

 

Genetic algorithm (GA) is stochastic global adaptive search optimization technique based on 

the mechanisms of natural selection. GA was first suggested by John Holland and his 

colleagues in 1975.  It mimics the metaphor of natural biological evolution [1].  GA has been 

recognized as an effective and efficient technique to solve optimization problems. Compared 

with other optimization techniques, such as simulating annealing and random search method 

techniques, GA is superior in avoiding local minima, which is a significant issue in the case 

of nonlinear systems. GA operates on a population of potential solutions applying the 

principle of survival of the fittest to produce successively better approximations to a solution. 

At each generation of a GA, a new set of approximations is created by the process of 

selecting individuals according to their level of fitness in the problem domain and 

reproducing them using operators borrowed from natural genetics. This process leads to the 

evolution of populations of individuals that are better suited to their environment than the 

individuals from which they were created, just as in natural adaptation. GA has been shown 

to be an effective strategy in the off-line design of control systems by a number of 

practitioners. For example, Krishna Kumar and Goldberg [2] and Bramlette and Cusin [3] 

have demonstrated how genetic optimization methods can be used to derive superior 

controller structures in aerospace applications in less time (in terms of function evaluations) 

than traditional methods such as LQR and Powell’s gain set design. Porter and Mohamed [4] 

have presented schemes for the genetic design of multivariable flight control systems using 

Eigen structure assignment, whilst others have demonstrated how GAs can be used in the 

selection of controller structures [5]. GA starts with an initial population containing a number 

of chromosomes where each one represents a solution of the problem, the performance of 

which is evaluated by a fitness function. Basically, GA consists of three main stages: 

Selection, Crossover and Mutation. The application of these three basic operations allows the 

creation of new individuals, which may be better than their parents. From the above 

discussion, it can be seen that the GA differs substantially from more traditional search and 

optimization methods. The four most significant differences are: 

 GAs search a population of points in parallel, not a single point. 

 GAs do not require derivative information or other auxiliary knowledge; only the             

objective function and corresponding fitness levels influence the directions of search. 

 GAs use probabilistic transition rules, not deterministic ones. 

 GAs work on an encoding of the parameter set rather than the parameter set itself 

(except in where real-valued individuals are used). 

It is important to note that the GA provides a number of potential solutions to a given 

problem and the choice of final solution is left to the user. In cases where a particular problem 

does not have one individual solution, for example a family of Pareto-optimal solutions, as is 

the case in multi objective optimization and scheduling problems, then the GA is potentially 
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useful for identifying these alternative solutions simultaneously. This algorithm is repeated 

for many generations and finally stops when reaching individuals that represent the optimum 

solution to the problem. The GA architecture is shown in Fig. 

 

 
                                                       Genetic Algorithm Architecture 

 

2.  The MATLAB GA Toolbox 

 

Though there exist many noble public-domain genetic algorithm packages, such as 

GENESYS [6] and GENITOR [7], none of these provide an atmosphere that is directly 

compatible with existing tools in the control domain. The MATLAB Genetic Algorithm 

Toolbox [8] aims to make GAs open to the control engineer within the framework of an 

existing CACSD package. This allows the retention of existing modelling and simulation 

tools for building objective functions and allows the user to make direct comparisons 

between genetic methods and traditional procedures. 

 

2.1 Data Structures 

 

 MATLAB basically supports only one data type, a rectangular matrix of real or complex 

numeric elements.The main data structures in the GA Toolbox are chromosomes, phenotypes, 

objective function values and fitness values. The chromosome structure stores an entire 

population in a single matrix of size Nind × Lind , where Nind is the number of individuals and 

Lind is the length of the chromosome structure. Phenotypes are stored in a matrix of 

dimensions Nind × Nvar where Nvar is the number of decision variables. An  Nind× Nobj matrix 
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stores the objective function values, where Nobj is the number of objectives. Finally, the 

fitness values are stored in a vector of length Nind. In all of these data structures, each row 

corresponds to a particular individual. 

 

2.2 Toolbox Structure 

 

The GA Toolbox uses MATLAB matrix functions to build a set of versatile routines for 

implementing a wide range of genetic algorithm methods. In this section we outline the major 

procedures of the GA Toolbox.  

 

Population representation and initialisation: crtbase, crtbp, crtrp.  

 

The GA Toolbox supports binary, integer and floating-point chromosome representations. 

Binary and integer Populations may be initialised using the Toolbox function to create binary 

populations, crtbp. An additional function, crtbase, is provided that builds a vector describing 

the integer representation used. Real-valued populations may be initialised using crtrp. 

Conversion between binary and real-values is provided by the routine bs2rv that also supports 

the use of Gray codes and logarithmic scaling.  

 

Fitness assignment: ranking, scaling.  

 

The fitness function transforms the raw objective function values into non-negative figures of 

merit for each individual. The Toolbox supports the offsetting and scaling method of 

Goldberg [9] and the linear-ranking algorithm of Baker [10]. In addition, non-linear ranking 

is also supported in the routine ranking.  

 

Selection functions: reins, rws, select, sus. 

 

These functions select a given number of individuals from the current population, according 

to their fitness, and return a column vector to their indices. Currently available routines are 

roulette wheel selection [9], rws, and stochastic universal sampling [11], sus. A high-level 

entry function, select, is also provided as a convenient interface to the selection routines, 

particularly where multiple populations are used. In cases where a generation gap is required, 

i.e. where the entire population is not reproduced in each generation, reins can be used to 

effect uniform random or fitness-based re-insertion [9]. 

 

Crossover operators: recdis, recint, reclin, recmut, recombin, xovdp, xovdprs, xovmp, 

xovsh, xovshrs, xovsp, xovsprs 

 

The crossover routines recombine pairs of individuals with given probability to produce 

offspring. Single-point, double-point [12] and shuffle crossover [13] are implemented in the 

routines xovsp, xovdp and xovsh respectively. Reduced surrogate [13] crossover is supported 

with both single-, xovsprs, and double-point, xovdprs, crossover and with shuffle, xovshrs. A 

general multi-point crossover routine, xovmp, that supports uniform crossover [14] is also 

provided. To support real-valued chromosome representations, discrete, intermediate and line 

recombination are supplied in the routines, recdis, recint and reclin respectively [15]. The 

routine recmut performs line recombination with mutation features [15]. A high-level entry 

function to all the crossover operators supporting multiple subpopulations is provided by the 

function recombin. 
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Mutation operators: mut, mutate, mutbga 

 

Binary and integer mutation are performed by the routine mut. Real-value mutation is 

available using the breeder GA mutation function [15], mutbga. Again, a high-level entry  

function, mutate, to the mutation operators is provided. 

 

Multiple subpopulation support: migrate 

 

The GA Toolbox provides support for multiple subpopulations through the use of high-level 

genetic operator functions and a function for exchanging individuals amongst subpopulations, 

migrate. A single population is divided into a number of subpopulations by modifying the 

data structures used by the Toolbox routines such that subpopulations are stored in 

contiguous blocks within each data element. The high-level routines, such as select and reins, 

operate independently on each subpopulation contained in a data structure allowing each 

subpopulation to evolve in isolation from the others. Based on the Island or Migration model 

[16], migrate allows individuals to be transferred between subpopulations. Uni- and bi-

directional ring topologies as well as a fully interconnected network are selectable via option 

settings as well as fitness-based and uniform selection and re-insertion strategies. 

 

2.3 A Simple GA in MATLAB 

 

Fig.1 shows the MATLAB code for a Simple GA. The first few lines of the code set the 

parameters that the GA uses, such as the number and length of the chromosomes, the 

crossover and mutation rates, the number of generations and, in this case, the binary 

representation scheme. Next, an initial uniformly distributed random binary population, 

Chrom, is created using the GA Toolbox function crtbp. The objective function, objfun, is 

then evaluated to produce the vector of objective values, ObjV. Note that as we do not need 

the phenotypic representation inside the GA, the binary strings are converted to real values 

within the objective function call.  

 

The initialisation complete, the GA now enters the generational loop. First, a fitness vector, 

FitnV, is determined using the ranking scheme of Baker [11]. Visualisation and preference 

articulation can be incorporated into the generational loop by the addition of extra functions. 

In this example, the routine plotgraphics displays the performance of the current best 

controller allowing the user to asses the state of the search. Individuals are then selected from 

the population using the stochastic universal sampling algorithm, sus, with a generation gap, 

GGAP = 0.9. The 36 (GGAP × NIND) selected individuals are then recombined using single-

point crossover, xovsp, applied with probability XOV = 0.7. Binary mutation, mut, is then 

applied to the offspring with probability MUTR = 0.0175, and the objective function values 

for the new individuals, ObjVSel, calculated. Finally, the new individuals are re-inserted in 

the population, using the Toolbox function reins, and the generation counter, gen, 

incremented.  

 

The GA terminates after MAXGEN iterations around the generational loop. The current 

population, its phenotypic representation and associated cost function values remain in the 

users workspace and may be analysed directly using MATLAB commands. 
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LIND  =  15;                                               % Length of individual vars. 

NVAR =   2;                                               % No. of decision variables 

NIND  =  40;                                               % No. of individuals 

GGAP   =  0.9;                                             % Generation gap 

XOV    = 0.7;                                               % Crossover rate 

MUTR    = 0.0175;                                       % Mutation rate 

MAXGEN = 30;                                           % No. of generations 

                                                                    % Binary representation scheme 

FieldD = [LIND LIND; 1 1; 1000 1000; 1 1; 0 0; 0 0; 0 0]; 

%  Initialise population 

Chrom = crtbp(Nind, Lind*NVAR) ;              % Create binary population 

ObjV = objfun(bs2rv(Chrom, FieldD )) ;         % Evaluate objective fn. 

Gen =  0 ;                                                       % Counter 

%  Begin generational loop 

while  Gen  <  MAXGEN 

        %  Assign fitness values to entire population 

        FitnV = ranking ( ObjV ) ; 

        %  Visualisation 

       plotgraphics 

       %   Select individuals for breeding 

       SelCh = select (’sus’, Chrom, FitnV, GGAP) ; 

       %   Recombine individuals (crossover) 

       SelCh = recombin(’xovsp’, SelCh, XOV) ; 

       %   Apply mutation 

       SelCh = mut(SelCh, MUTR) ; 

      %    Evaluate offspring, call objective function 

      ObjVSel = objfun(bs2rv(SelCh, FieldD)) ; 

      %   Reinsert offspring into population 

     [Chrom ObjV]=reins(Chrom, SelCh, 1, 1, ObjV, ObjVSel) ; 

     %    Increment counter 

     Gen   =  Gen+1; 

end 

%  Convert Chrom to real-values 

Phen   =  bs2rv (Chrom, FieldD) ; 

 
                                               Figure 1: MATLAB Code for a Simple GA 

 

 

3.  Applications and Further Developments 

 

The GA Toolbox has been beta-tested at approximately 30 sites world-wide in a wide range 

of application areas 

including: 

               • parametric optimization                                • multiobjective optimization 

               • controller structure selection                         • nonlinear system   identification 

               • mixed-mode modelling                                 • neural network design 

               • real-time and adaptive control                      • parallel genetic algorithms 

               • fault identification                                         • antenna design 
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In future releases we plan to incorporate support for multi objective optimization. Multi 

Objective GAs (MOGAs) evolve a population of solution estimates thereby conferring an 

immediate benefit over conventional MO methods. Fonseca and Fleming [17] have 

demonstrated how, using rank-based selection and niching techniques, it is feasible to 

generate populations of non-dominated solution estimates without combining objectives in 

some way. This is advantageous because the combination of non-commensurate objectives 

requires precise understanding of the interplay between those objectives if the optimization is 

to be meaningful. The use of rank-based fitness assignment permits different non-dominated 

individuals to be sampled at the same rate thereby according the same preference to all 

Pareto-optimal solutions. Because MOGAs are susceptible to unstable converged 

populations, due to the potential for very different genotypes to result in non-dominated 

individuals, a particular problem is the production of lethals when fit members of the 

population are mated. The search then becomes inefficient and the GA is likely to converge to 

some suboptimal solution. In general, a combination of mating restriction, niche formation 

and redundant coding may be appropriate. 

 

4.  Concluding Remarks 

 

Together with MATLAB and SIMULINK, the GA Toolbox described in this paper presents a 

aware and integrated environment for the control engineer to experiment with and apply GAs 

to tasks in control systems engineering [18],[19],[20],[21]. Whilst the GA Toolbox was 

developed with the emphasis on control engineering applications, it should prove equally as 

useful in the general field of GAs, particularly given the range of domain-specific toolboxes 

available for the MATLAB package. 
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