

COMPUTER SCIENCE AND ENGINEERING

Java Bytecode Compilation

Punit

Abstract
High-level languages used for programming like Java,C,C++ etc. Compiles a program to its equelent low level

code which can be understood and executed by the machine. Here we will discuss about the Java compilation

process, i:e, how Java compiles a code and what stages it have in compilation process. We basically focus on the

Java bytecode and its advantages over native code. As we know the purpose of compilation is mainly to produce

the executable version of a program. We also discuss the various approaches of compilation in java. The first

approach is to compiling tha java bytecode, second is the two stages process going through the java bytecode to

java native code, the third approach is to go through bypassing the java bytecode and going directly to natice

machine code.

Keywords: Java Bytecode, Compilation process, Native code,JIT(Just in time), condotions in javabytecode,

methods in java bytecode.

1. Introduction
The Java is the most popular programming languages
now a days that we all know. Let us discuss about some
basic concepts of java like Compilation process and its

bytecode. As we know we write tha java source code
and the compiler(JVM) which is platform independent
translates it into bytecode. Bytecode are the machine
language of the Java virtual machine.When a Java
virtual machine loads tha class file, it gets one stram of

bytecodes for each method in the class. The bytecode
for a method are executed after the method is called
during the runnung the program. They can be executed
by interpretation, JIT

compiling or the technique chosen by the designer of a
particular JVM. The Java bytecode allows us to use
loops, conditional statement, methods etc. We will

discuss further in detail about Java bytecode and other
statements like conditional statement and methods in
Java bytecode.

2. Java Compilation Process
The main purpose of compilation is to produce an

executable file of a program. Java requires each class

placed in its own source file and file must be same as

class name with extension .java.

Fig. 1

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 43

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

When we start compiling source code, each class is

placed in its own .class file that contain the bytecode.

After finishes compiling all source files, the result

class file will be equal to the source files, then which

will combine to form your Java program. This is the

stage where the class loader comes along with the

verifier as shown in Fig 1.

The class loader is used for loading each class

bytecode. When class is needed by the JVM finds the

file that contains the bytecode for the class, then it is

read into mermory and passed to the defineClass.

After that the verifier is invoked and process the

bytecode in four passes to ensure it is safe. After the

class is sucessfully verified, its loading is completed

and it is available for use by the runtime. The Java

bytecode allow us to easily decompile class files to

source.

There exists three different approaches to Java

compilation : 1. Compilation to Java bytecode

2. Two-stage process going through bytecode to

native code

3. Bypasses Java bytecode and going directly to

native machine code.

2.1 Just-in-time compilation:

A just-in-time compiler (a JIT) compiles Java

bytecode to the native machine code of the machine

which we are using (for example, an Intel Pentium

processor or a SUN Sparc chip). This compilation is

performed at the time when the request is made to

execute the program (hence the name “just in time”).

Java virtual machine include a JIT compiler which

first compiles the Java bytecodes to native code and

then runs the native code.

It would seem that this method of compilation

combines the benefits of the byte code approach with

the speed of the native code approach but still it has

a drawback. A JIT runs in “user time”, which means

that the time taken to compile the bytecodes to native

code is seen by the user as a delay in starting the

execution of the program. This visibility to the user

severely constrains the amount of time which the JIT

compiler can take to run. However, the work of

producing very efficient native code requires a

number of different time-consuming analyses. A JIT

cannot take the time to perform these so it must settle

for producing compiled native code whose run-time

performance could have been improved, had more

time been available. Because the time to compile the

program from bytecodes is perceived as part of the

run time of the application and because the compiled

native code cannot be highly optimised, it might be

that the final run time of the application is not much

better than if the program had been interpreted as

bytecodes in the first place, saving the overhead of the

time taken by JIT compilation. For this reason many

Java virtual machines (such as SUN’sjava and

Microsoft’sjview) provide JIT compilation as an option,

which can be turned off.

2.2 Native compilation:

If we are willing to give up the portability and compact

size of executable program provided by Java bytecode

then an option is to compile our Java source code directly

to native code for our chosen machine. In this case the

time taken by the compilation is performed only while the

program is being developed and not every time that the

program is executed. In this case it is possible to spend

more time running the compiler, performing the time-

consuming analyses which may lead to a more highly

optimised native code program as a result. Such a

compiler for Java is gcj, the GNU compiler for Java. This

is part of a family of compiler programs which includes

compilers for the languages C and C++. Some parts of the

code of these compilers are shared and development tools

such as the program debugger can be used on programs

written in these languages and compiled with one of the

GNU family of compilers.

2.3 Java Bytecode compilation:

The standard approach to Java compilation is to compile

to Java bytecode and then to execute this on a Java Virtual

Machine (JVM). The JVM interprets the Java bytecodes

to run the program. Compilation to bytecode brings

several genuine advantages. One advantage is that

compiled programs are portable in the sense that they can

be run on a number of different computer systems (such

as Linux, Windows, Solaris, and many others) for which

a JVM is available. The Java language is the only

programming language in widespread use today which

provides this capability. At best, programs written in

other programming languages need to be recompiled if

they are moved from one machine to another. More

often, they need to be modified as well. The portability

which Java provides is brought about because only the

JVM needs to be ported from one machine to another in

order to be able to port any Java bytecode program

between machines.

3. Java Bytecode in detail
Let us discuss the bytecode in detail with small examples.

As we know java bytecode having the extension .class

after compilation of source code file. Let understand the

bytecode concept with a small

example: a pojo with one field, a setter and a getter

public class Foo { private

String bar;

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 44

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Each pair of hex numbers(a byte) is actually the

tranlatable to opcodes, but it is too hard to read these

hexcodes in binary format. Lets proceed to the

mnemonical representation of these codes. Executing

the javap -c Foo will printout the original bytecode

stored in Foo.class file as following :

public class Foo extends java.lang.Object {

public Foo();

Code:

0: aload_0

1: invokespecial

 #1; //Method

java/lang/Object."<init>":()V

4: return

public java.lang.String getBar();

Code:

0: aload_0

1: getfield #2; //Field bar:Ljava/lang/String;

4: areturn

public void setBar(java.lang.String);

Code:

0: aload_0

1: aload_1

2: putfield #2; //Field bar:Ljava/lang/String;

5: return

}

The class is very simple and it is easy to see the relation

between the sourced code and the generated bytecode.

First of all we notice that in the bytecode version of the

class the compiler inferred the default constructor (as

promised by the JVM spec). Secondly, if we study the

Java bytecode instructions (in our example aload_0 and

aload_1), we can see that some of the instructions have

prefixes like aload_0 or istore_2. This is related to the

type of the data that the instruction operates with. The

prefix 'a' means that the opcode is manipulating an object

reference. The prefix 'i' means the opcode is manipulating

an integer.

3.1 Conditionals in Java bytecode:

Of course different programs, even if they achieve the

same effect, will usually give rise to different bytecode

sequences when compiled. We consider now two

different ways of implementing a method to compute the

absolute value of an integer (the absolute value of an

negative integer –n is n whereas the absolute value of a

positive integer n is n itself. We write two versions of

a method to compute the absolute value of n. These

versions are called absFirst() and absSecond(). The

public String getBar(){

return bar;

}

public void setBar(String bar) {

this.bar = bar; }

}

First of all compile the file and get the file Foo.class

which is the bytecode file. Open the bytecode file using

hexeditor and you will see some hexcodes like as

shown in fig. 2 below :

Fig. 2 Hexcode of Foo.class file

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 45

COMPUTER SCIENCE AND ENGINEERING

difference between them is whether we test for being

negative or test for being positive. In the first case we

place the value –n on the true limb of the conditional

and th e value n on

The case of comparing with zero occurs so

commonly in programs that specialised versions of

the comparison operators are provided for this, ifeq,

ifne, iflt, ifge, ifgt, ifle. The instruction ineg negates

the integer on the top of the stack. The instruction

ireturn returns the integer result on top of the stack.

3.2 Break and continue:

The control operators to break out of a loop or to continue

with the next iteration have simple translations in Java

bytecode instructions. Each causes a transfer of control,

the break to the next statement after the loop and the

continue to the update oper- ation which precedes the

loop condition evaluation. The following example

illustrates this process.

the false limb. In the second case we instead place n false limb of the conditional. on the true limb of the

conditional and –n on the

f

fig. 3 These give rise to the following bytecode sequences when compiled

Fig 4

F

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 46

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Fig. 5

3.3 Simple method invocation:

The simplest type of method to invoke in Java is a

static method with no parameters. Below we show the

Java source code for a class with tree static methods

and the relevant part of the compiled bytecode for this

class. The methods of the class are referred to by number

so that method first() is #1, method second() is #2 and

method third()is #3. Returning an integer result from an

integer method is achieved by leaving the integer result

on top of the operand stack.

Seen from inside the method, formal parameters are

simply numbered, just as lo- cal variables are. Thus the

methods add2() and add1()

refer to the integer variable numbered

zero (using iload 0).

4. Advantages of Java Bytecode
There are three advantages of Java using bytecode

instead of going to the native code of the system:

4.1 Portability: Each kind of computer has its unique

instruction set. While some processors include the

instructions for their predecessors, it's generally true

that a program that runs on one kind of computer won't

run on any other. Add in the services provided by the

operating system, which each system describes in its

own unique way, and you have a compatibility

problem. In general, you can't write and compile a

program for one kind of system and run it on any other

without a lot of work. Java gets around this limitation

by inserting its virtual machine between the application

and the real environment (computer + operating

system). If an application is compiled to Java bytecode

and that bytecode is interpreted the same way in every

environment then you can write a single program which

will work on all the different platforms where Java is

supported. (That's the theory, anyway. In practice there

are always small

incompatibilities lying in wait for the programmer.)

4.2 Security: One of Java's virtues is its integration into

the Web. Load a web page that uses Java into your

Fig. 6

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 47

JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

browser and the Java code is automatically downloaded

and executed. But what if the code destroys files,

whether through malice or sloppiness on the

programmer's part? Java prevents downloaded applets

from doing anything destructive by disallowing

potentially dangerous operations. Before it allows the

code to run it examines it for attempts to bypass

security. It verifies that data is used consistently: code

that manipulates a data item as an integer at one stage

and then tries to use it as a pointer later will be caught

and prevented from executing. (The Java language

doesn't allow pointer arithmetic, so you can't write Java

code to do what we just described. However, there is

nothing to prevent someone from writing destructive

bytecode themselves using a hexadecimal editor or

even building a Java bytecode assembler.) It generally

isn't possible to analyze a program's machine code

before execution and determine whether it does

anything bad. Tricks like writing self-modifying code

mean that the evil operations may not even exist until

later. But Java bytecode was designed for this kind of

validation: it doesn't have the instructions a malicious

programmer would use to hide their assault.

4.3 Size: In the microprocessor world RISC is generally

preferable over CISC. It's better to have a small

instruction set and use many fast instructions to do a job

than to have many complex operations implemented as

single instructions. RISC designs require fewer gates on

the chip to implement their instructions, allowing for

more room for pipelines and other techniques to make

each instruction faster. In an interpreter, however, none

of this matters. If you want to implement a single

instruction for the switch statement with a variable

length depending on the number of case clauses, there's

no reason not to do so. In fact, a complex instruction set

is an advantage for a web-based language: it means that

the same program will be smaller (fewer instructions of

greater complexity), which means less time to transfer

across our speed-limited network.

Against its benefits, the use of bytecode brings a

disadvantage. It is often argued that interpretation of

byte code programs is much slower than execution

of native ode, compiled only for the machine which we

are actually using. Users of computer programs want

efficient products: it is frustrating to use a computer

program which pauses during execution or which

cannot keep up with the speed of user input. The

approach used to combine the usefulness of bytecode

with the efficiency of native code is calledjust-in-time

compilation.

5. Refrences
[1] http://stackoverflow.com/questions/3406942/how

-exactly-does-java-compilation-take-place

[2] http://www.javaworld.com/jw-09-1996/jw-

09bytecodes.html

[3] http://althing.cs.dartmouth.edu/local/www.acm.ui

uc.edu/sigmil/RevEng/ch02.html

[4] http://arhipov.blogspot.in/2011/01/java-

bytecodefundamentals.html

[5] The Java Virtual Machine is described in the

book The Java Virtual Machine Specifica- [6] tion

by Tim Lindholm and Frank Yellin, Addison-Wesley,

Second edition, 1999.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-12 | December, 2015 | Paper-4 48

