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Abstract  
Safety-Critical Computer Controlled Systems 

(SCCCS) are those systems whose failure could 

result in loss of life, significant property 

damage, or damage to the environment. There 

are many well known examples in application 

areas such as medical devices, aircraft flight 

control, weapons, and nuclear systems. These 

systems consist of a set of functional elements, 

controlled by embedded processors that together 

achieve a common objective. Most software-

related accidents occurred in SCCCS by 

executing flawed programming and instructions. 

The research literature currently lacks an 

appropriate safety analysis and is fragmented 

among activities.  The aim of this paper is to 

reduce the probability of unsafe system 

conditions using a variety of management, 

organization and technical measures. The 

approach begins with conducting three different 

types of hazard analysis techniques to SCCCS 

such as Software Failure Mode and Effects 

Analysis (SFMEA), Software Fault Tree 

Analysis (SFTA) and Systems-Theoretic Process 

Analysis (STPA).  In this paper, the application 

of systems-theoretic approach is implemented on 

Ball Position Control System (BPCS) and 

performed the comparison between traditional 

methods and systemic methods for analysis and 

design. The proposed systems-theoretic 

approach can be applied to SCCCS in diverse 

sectors to identify and control the identified 

hazards. There is clear value in developing a 

systems-theoretic approach to safety analysis in 

SCCCS.  Development of a SCCCS based on 

our proposed software safety approach 

significantly enhanced the safe operation of the 

overall system. 

1. INTRODUCTION 

Safety-Critical Computer Controlled System is 

safety-critical, integration of computation, social 

networking, and physical processes.  Safety 

critical systems are used in multiple areas such 

as medicine or healthcare, aerospace, 

automotive, chemical processes, civil 

infrastructure, energy, manufacturing, 

transportation, entertainment, and consumer 

appliances traffic management and safety, 

automotive engineering, industrial and process 

management, avionics and space equipment, 

industrial robots, technical infrastructure 

management, distributed robotic systems and 

biological systems technology [1].  SCCCS 

involve trans-disciplinary techniques, combining 

concept of cybernetics, mechanic design, and 

process science [2, 3, and 4].  The emerging 

smart technologies, such as computers and 

software, are changing the types of accidents in 

these days.  At the same time, traditional hazard 

analysis techniques assume accidents are caused 

by component failures or faults and over 

simplify the role of humans [5, 6]. In these days, 

most software-related accidents can be 

monitored to partial or faulty program 

requirements [7, 8]; however current hazard 

analysis methods like Fault Tree Analysis 

(FTA), Failure Mode Effect Analysis (FMEA) 

analyze component failures and easily overlook 

unsafe requirements.    

Safety critical systems have been involved in 

several accidents.  Some well-known software-

related accidents in key industrial sectors are 

described below, in brief. Some of the most 

generally described software-related accidents in 

Safety Critical Systems involved a computerized 

radiation therapy machine called the Therac-25.  
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On June 4th, 1996 an unmanned Ariane 5 rocket 

launched by the European Space Agency 

exploded just forty seconds after its lift-off from 

Kourou, French Guiana. In February 2010, 

Toyota recalled its flagship high-technology 

hybrid car, the Prius, due to a brake software 

problem.  The largest single American casualty 

of the Gulf War occurred on February 25th 

1991, when an Iraqi Scud missile struck a 

barrack near Dhahran, Saudi Arabia, killing 28 

soldiers.   

Table 1:  examples of accidents caused by 

software failure 

Industry Unsafe situation Year 

Biomedica

l  

Therac-25 Cancer 

Radiation 

Accident, 

June 

1985, 

Software miss-

configuration in 

CT scanner used 

for brain perfusion 

scanning. 

August 

2009- 

February 

2008 

Automotive Toyota Prius Car 

Recall 

Feb. 2010  

Aviation  Korean Airways 

Flight 801 

Accident 

Oct.1997  

Defence  USS Yorktown 

Breakdown 

Sep. 1997  

Aerospace  Ariane 5 Rocket 

Failure,  

Malaysia flight  

370 crash 

June 

1996, 

March2014  

1.1 Implications for SCCCS 

For safety critical systems, the implications are 

clear - a single software-related failure leading 

to an accident may have extremely severe 

consequences. As computers are deployed in 

more and more safety critical applications, it is 

becoming obvious that there are still many 

significant problems to be solved. The real-life 

software failure accidents we have described 

earlier emphasize the need for improvement in 

both the management and technical aspects of 

safety critical systems development and 

deployment. The diversity of current standards 

and practices, and disagreement over concepts 

such as the use of Safety Integrity Levels (SILs) 

illustrate the absence of common understanding 

and agreement within the industry on the best 

route to improved products. 

Software engineering of a safety-critical system 

requires a clear understanding of the software‘s 

role in, and interactions with, the system [9], 

[10].  The development of safety-critical systems 

demands a different, more rigorous approach 

than most other computer applications. As 

safety-critical systems are often real-time control 

systems they require the utmost care in their 

specification, design, implementation, operation 

and maintenance, as they could lead to injuries 

or loss of lives and in-turn result in financial loss 

[11], [12].  

They require several disciplines that are still 

unfamiliar to many programmers and technology 

managers like safety engineering, software 

engineering of critical systems, and formal 

methods. Safety engineering teaches how to 

design systems that remain safe even when 

hardware or software fails. Software engineering 

provides methods for developing complex 

programs systematically. Formal methods are 

mathematically based techniques for increasing 

product reliability that overcome some of the 

limitations of trial-and-error testing and 

subjective reviews.  

1.2 Safety-related terms: 

Accident: An unwanted and surprising event 

that outcomes in an [unacceptable] level of loss 

[13].  

Hazard: A system state or set of conditions that, 

together with a particular set of worst-case 

environmental conditions, will lead to an 

accident (loss) [14].  

Safety: The freedom from accidents [13]. 

Software Safety:   Software safety is a 

component of overall system safety. Software 

safety can be defined as: 

 features and procedures which ensure 

that  

 a product performs predictably 

under normal and abnormal 

conditions, and  
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 the likelihood of an unplanned 

event occurring is minimized 

and its consequences 

controlled and contained  

 thereby preventing accidental injury or 

death, whether intentional or 

unintentional  

The notion of software safety was first 

mentioned in the MIL-STD-1574A (1979) 

which required analysis of software to identify 

and eliminate software errors relating to safety 

critical commands and control functions of 

space and missile systems. Since then, the role 

of software has becoming increasingly important 

and is being used in many critical applications, 

such as avionics, vehicle control systems, 

medical systems, manufacturing, power systems, 

and sensor networks [15, 16]. 

Safety: Freedom from those conditions that can 

cause mishaps [14]. 

Component failure accidents: An accident that 

results from component failures, including the 

possibility of multiple and cascading failures 

[14].  

Component interaction accident: An accident 

that arises in the interactions among system 

components (electromechanical, digital, human, 

and social) rather than in the failure of 

individual components [14]. 

Goal for the paper is need to expand our view of 

safety such as technical, human, organizational 

and need to understand the whole system of 

interactions and need to build in safety from the 

start.  Technical factors focus on independent 

random failures, but other technical problems 

pose growing challenge there are design errors, 

incomplete requirements, incorrect assumptions.  

The ultimate goal is to develop foundations and 

techniques for building safe and effective Safety 

critical computer controlled system. 

This paper proposes a hazard-based safety-

driven model-based system engineering 

methodology on SCCCS.  The approaches 

described in this paper are focused on achieving 

and improving safety analysis process in 

SCCCS.  This paper identifies the methodology 

for achieving the quality safety analysis of 

SCCCS.  It gives a framework for integrating 

this methodology in the software development 

process.  This paper does not seek to present 

metrics for each of the proposed quality of 

software safety.   Identification and evaluation 

of metrics for each of the safety analysis is not 

within the scope of this research.   Practical 

validation of the proposed model is 

demonstrated by the implementation of case 

study Ball Position Control system (BPCS).    

2. MATERIALS AND METHODS 

Safety-critical system failures may lead to 

catastrophic accidents, which are dangerous to 

the environment and to the people around. The 

methods used to analyze the failures of SCS are 

Failure Mode and Effects Analysis (FMEA), 

Failure Modes Effects and Criticality Analysis 

(FMECA), Fault Tree Analysis (FTA) [17], 

Event Tree Analysis (ETA) and Failure Mode 

Factors and Effects Analysis (FMFEA) [18]. 

The features of FMEA and FTA methods are 

described briefly followed by various analysis 

techniques like Graphical Requirement Analysis 

(GRA), Deductive Cause-Consequence Analysis 

(DCCA) and language like Unified Modeling 

Language (UML) etc [19].  

To model a process the most critical facet is to 

catch the dynamic behavior.  To clarify a bit in 

detail, dynamic behavior means the behavior of 

the system when it is running.  So only static 

behavior is not sufficient to model a system 

rather dynamic behavior is more important than 

static behavior.  Over the years several 

approaches for verification of software of a 

system  has been undertaken as shown in 

following figure 1, which has been also applied 

to SCS safety analysis, but with little success.  

The inaccuracy in experimental safety 

evaluation is evident from the large number of 

recalls faced by several manufacturers of safety 

critical systems.  
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Fig. 1 Safety assurance approaches for 

software 

a) Failure Mode and Effects Analysis 

(FMEA)  
Failure Mode and Effects Analysis (FMEA) [18] 

is a method used for analysis to assure quality. It 

is used for analyzing the failures of a system that 

may lead to hazards.  It is used to find their 

potential failure of a product or a process, to 

identify and estimate its importance and to 

recognize appropriate actions to prevent the 

potential failure of the system. FMEA is used for 

analyzing the individual risks of a system. The 

risks one-by-one are checked against each other 

to recognize the failures. FMEA does not 

provide a report on the total failure risk. For the 

analysis of failures, fault-tree analysis is more 

appropriate. The disadvantages of the FMEA 

technique are they can identify only the major 

failures of the system and the data flow of the 

system cannot be represented. 

b) Fault Tree Analysis (FTA) 

Fault Trees [5] [18] are used for the analysis of a 

system and to find the probability of failures. A 

Fault Tree has its representation in the form of a 

tree. It is used for analyzing the failures that may 

occur due to various conditions. A deductive 

analysis is used to find the failure that is placed 

at the top of the tree and it provides alternatives 

for the occurrences of failures. The limitations 

of FTA are it is a complicated process and the 

data flow is not represented. 

FTA and FMEA are used for the analysis of a 

system for enhancing system reliability during 

the design but does not relate to a system 

undergoing maintenance. The limitations of 

FTA are it is a complicated process and the data 

flow is not represented.  

Systems-Theoretic Process Analysis 

(STPA)provides an algorithmic and well-guided 

analysis process that identifies the causes of 

system hazards, including hardware component 

failures, software errors, complex system 

interactions, human errors, and inadequate 

organization management, policy, and 

procedures.  The research approach used in this 

paper in respect of software safety analysis of 

SCCCS including hardware or software and 

integration of system are practically 

implemented for case study Ball Position 

Control System (BPCS) which are developed in 

the embedded system laboratory.  

c) Systems-Theoretic Process Analysis 

(STPA) 

STPA is a new hazard research technique, based 

on STAMP for SCS. It uses a collection of 

interacting loops of control to evaluate SCS. It 

can be used at any stage of the system life cycle, 

from before designing to after implementation. 

STPA technique is dependent on the following 

ways: define system hazards and related safety 

constraints, develop safety control structure for 

closed-loop system, recognize possibly unsafe 

control actions, determine how potentially 

insufficient control activities could happen. 

There are several limitations of these 

approaches. The majority of software related 

injuries have involved errors in the 

requirements, not problems of the software to 

properly apply the requirements in SCCCS. A 

second significant issue is that most typical 

hazard research techniques such as FTA and 

FMEA work on a preexisting design in SCS. But 

systems and system styles have become so 

complicated that patiently waiting until a design 

is finished carrying out safety research on it is 

impractical. The only hope for practical and 

cost-effective safe design techniques in methods 

is to develop safety in from the beginning. 

This paper makes the claim that safety analysis 

involves performing additional specialized 

activities beyond basic good software 

engineering practices.  These involve additional 

design, analysis, measurement and verification 
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activities that occur concurrently with the 

software development activities.   The paper 

validates the proposed safety analysis approach 

by presenting case study of laboratory 

prototypes of Ball position control system 

(BPCS).    In addition, this paper will show that 

traditional system safety and reliability analysis 

techniques such as FMEA (Failure Mode and 

Effect Analysis), FTA (Fault tree Analysis) and 

Systems-Theoretic Process Analysis (STPA) can 

be successfully applied to systems with 

significant software content to complement the 

dynamic verification techniques.   

3. PROPOSED FRAMEWORK FOR 

HAZARD ANALYSIS IN SCCCS 

The development of safety-related systems relies 

heavily on the identification and subsequent 

analysis of system hazards. These hazards are 

identified in the context of the operation of the 

overall system in its operating environment. This 

means that modifying the operational 

environment may alter the hazards associated 

with the system and that the safety of the system 

components will depend directly on the top level 

hazards [20].  This in turn implies that software 

safety must be considered in the context of the 

overall system in its operating environment, and 

that the hazards applicable to the software must 

be related to those hazards identified at the top 

level.  Therefore an important task of system 

safety analysis is to associate, where possible, 

potential hazards identified at the top level with 

the system components. 

3.1 System Safety Analysis Lifecycle 

Systems are comprised of many components 

such as electrical, software, and mechanical. 

Development of such systems follow a lifecycle 

paradigm with many phases [21, 22], this 

lifecycle is generally divided into system 

requirements analysis and specification, system 

design, system implementation, integration and 

test. System design phase can spawn many other 

lifecycles depending on the various system 

components [23]. Similarly electrical and 

mechanical lifecycles are spawned for their 

respective subsystems. 

3.2 Software Safety Analysis Lifecycle 

Figure 2 illustrates the software safety 

analysis lifecycle, which is integrated with the 

software development lifecycle. The software 

development lifecycle is divided into 

requirements analysis and specification, design, 

implementation, and test phases. Similarly, we 

divide the software safety analysis lifecycle into 

requirements safety analysis, design safety 

analysis, code safety analysis, and test safety 

analysis. Each software safety analysis phase is 

a sub-activity of the corresponding development 

phase. The input to each phase of the software 

safety analysis lifecycle is the software 

decomposition from the corresponding 

development phase, and the safety faults 

identified at the previous safety analysis phase. 

Except for the test safety analysis, the output of 

each phase of the software safety analysis 

lifecycle is the safety requirements, fault tree, 

and hazard dictionary for that phase. The output 

of test hazard analysis is the outcome of the 

execution of safety test cases. Each phase of the 

software safety analysis lifecycle is performed 

iteratively and concurrently within the 

corresponding development lifecycle.  

 
Fig. 2 Software safety analysis lifecycle 

integrated with software development lifecycle 

Good requirements have several useful 

properties, such as being consistent, necessary, 

and unambiguous. The basis of sound design for 

a SCCCS is the identification, through 

systematic analysis, of the hazards that the 

system might encounter in operation. Traditional 

safety analysis techniques such as SFTA and 

SFMEA can indeed be successfully applied to 

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 5 



systems with significant software content.  For 

SCCCS, software design must enforce safety 

constraints using STPA technique. Testing 

safety analysis is intended to supplement the 

existing requirements-based testing. The 

analysis of each hazard may involve use of 

common hazard analysis techniques such as 

Fault Tree Analysis (FTA) and Failure Modes 

and Effects Analysis (FMEA). FTA is a top 

down technique, beginning with the hazard as 

the top event as the result of a cause-effect 

relationship. By tracing backwards from effects 

to causes, we discover intermediate causes of the 

hazard. These intermediate causes are combined 

in the FTA using logical relationships, namely 

‘AND’ and ‘0R’. Each branch of the FTA 

terminates with an internal or external condition. 

FMEA is a bottom up technique, typically used 

to examine the consequences of failures in 

system components. STPA, or Systems-

Theoretic Process Analysis, is a new hazard 

analysis technique with the same goals as any 

other hazard analysis technique, that is, to 

identify scenarios leading to identified hazards 

and thus to losses so they can be eliminated or 

controlled.  STPA is based on systems theory 

while traditional hazard analysis techniques have 

reliability theory at their foundation. STPA was 

designed to also address increasingly common 

component interaction accidents, which can 

result from design flaws or unsafe interactions 

among non-failing (operational) components. In 

fact, the causes identified using STPA are a 

superset of those identified by other techniques. 

  

 

4. STPA ANALYSIS OF SAFETY-

CRITICAL COMPUTER CONTROLLED 

SYSTEMS: BALL POSITION CONTROLL 

SYSTEM (BPCS) 

The central objective of the BPCS system is to 

regulate the flow of air into a plastic tube so as 

to keep a small light weight ball suspended at a 

predetermined height called the set-point. 

Increasing the flow raises the ball and 

decreasing the flow lowers it. The BPCS 

experiment consists of: 3-foot long white plastic 

tube, light weight ball, DC motor fan, and 

ultrasonic sensor circuit and 89S52 micro 

controller. The proposed framework for hazard 

analysis of SCCCS in the BPCS consists of the 

following criteria:  

 Design of control structure.  

 Identification of unsafe control actions 

and causal factors. 

 Creation of hazard log. 

 Apply analysis to sub system 

components. 

 Perform safety-guided design process. 

Each criteria of the model is integrated into 

BPCS development process as described below.  

Here the system objectives are defined as Allow 

system to reduce the probability of unsafe 

system conditions through using a variety of 

physical, organization, cyber measures.   

A) System and Software Hazard 

identification 

A safety-driven design should start with 

identifying accidents and then defining the 

system hazards which would cause these 

accidents to occur. The hazards here can be 

defined as system states or a set of conditions 

that, together with a particular set of hazardous 

conditions, will lead to an accident [24]. Hazard 

is a state of system that leads to accidents [25]. 

The system-level hazard relevant to an accident 

includes: 

H1 Ball Position Controller’s Output signal 

is too high 

H2 Ball Position Controller’s Output signal 

too low 

H3 Ball Position Controller’s Loss of output 

signal to drive circuit 

H4 Analog to Digital converter’s failure to 

convert position (in hardware) 

 

b) Identification of safety constraints 

After the system hazards are defined, they 

should be translated into the corresponding 

safety constraints, which are restrictions on how 

the system can achieve its purpose. 

hazards Safety constraints (SC) 

H1 SC1: Ball Position Controller’s the 

output signal stays in between the 

boundary, duty cycle always in 

below the 100% when fan is moving 
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H2 SC2: Ball Position Controller’s the 

output signal stays in between the 

boundary, duty cycle always in 

above the 0% when fan is moving 

H3 SC3: Ball Position Controller’s the 

output signal stays in between the 

boundary, duty cycle always in 

above the 0% when fan is moving 

 

c) Identify unsafe control actions for BPCS 

Once the hazards and related safety constraints 

have been defined, a typical socio-technical 

hierarchical structure with safety control 

processes, which is called hierarchical safety 

control structure, should be described.  The next 

step is to develop the safety control structure for 

the system. The operational objective of the 

system is to maintain the ball at a predefined 

height in the tube. The software in the 

microprocessor provides the control mechanism; 

it implements a proportional controller (P-

controller)-that is, the output signal is 

proportional to the amount of error in the ball’s 

position relative to the set-point. A schematic 

diagram of the system is shown in Figure 3. 

 
Fig. 3 Block diagram of the closed loop control 

system 

d) Identify unsafe control actions for BPCS 

The STPA process is used to analyze each of the 

high-level hazards.  The two steps of STPA 

include identifying unsafe control of the system 

and determining how these control action could 

occur.   A controller can provide unsafe control 

in the following four ways: 

 A control action is not provided, missing 

or not followed. 

 A control action is provided, but is 

wrongly provided. 

  A control action is provided at the 

wrong timing, earlier or later than the 

required timing, or out of sequence with 

other control actions. 

  The control action is stopped too early 

or applied too long.  

After the safety control structure in system-level 

has been defined, the next step is to identify the 

potential inadequate control, which may drive 

the system into a hazardous state.  STPA is a 

systemic method used for hazard analysis.  This 

model considers hazards and causes in a 

systemic way rather than just based on 

component failures or failure events. At this 

level, Micro controller becomes a controller for 

the two lower controlled processes: Analog to 

Digital converter, Motor driver.  Micro 

controller maintains the overall system, A to D 

converter and Motor driver processing.  

Table 3: Unsafe control actions for BPCS 

C

ont

rol 

Ac

tio

n 

Not 

providing 

cause of 

hazards 

provid

ing 

cause of 

hazards 

Inco

rrect 

timin

g/ 

order 

Stop

ped 

too 

soon 

Ou

tpu

t 

sig

nal 

Ball 

controller not 

provides 

Output signal 

within 

boundary 

command 

when the duty 

cycle goes to 

100%. 

 

Ball 

controller not 

provides 

Output signal 

within 

boundary 

Ball 

controll

er 

provides 

Output 

signal 

comman

d when 

the duty 

cycle 

goes to 

100%. 

 

Ball 

controll

er 

provides 

Ball 

contro

ller 

provi

des 

Outpu

t 

signal 

comm

and 

too 

late or 

too 

early  

Ball 

contr

oller 

provi

des 

Outp

ut 

signal 

com

mand 

too 

soon 

or too 

long  
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command 

when the fan 

blows at the 

full speed. 

 

Output 

signal 

too high 

comman

d when 

the fan 

blows at 

the full 

speed 

e) Identify how the safety constraints could be 

violated for BPCS 

After hazards have been identified, the following 

step should identify causal factors, which are 

very useful to figure out mitigating features 

against the hazard.  Because hazards result from 

inadequate control and enforcement of safety 

constraints, the causal factors can be understood 

in terms of control flaws.   

 Ball at top of the tube / Sensor damaged 

 Fan runs too fast 

 Output signal too high 

 D4 pin output high 

 Input duty cycle to ISR stuck high 

 Ball at bottom of the tube 

 System does not run 

 Fan runs too slow 

 Fan does not run 

 Loss of output signal to drive circuit 

 Output too low 

 Connector 

 Failure to initialize input register 

 Failure to initialize output register 

 Failure to initialize ISR 

 Loss of output signal to drive circuit 

 Output signal too high 

 Output signal too low 

 Loss of output signal to drive circuit 

 Incorrect output data 

 Response data too slow 

 Dc motor fan runs too fast 

 Dc motor fan does not run or runs too 

slow 

 Dc motor fan runs too fast 

 Dc motor fan does not run or run too 

slow 

  

f) Hazard list and hazard log 

Hazard 

H1. Ball Position Controller’s Output signal is 

too high. 

System Element 

Micro controller, Input control circuit, Output 

control circuit 

Causal Factors 

 CF1: Ball at top of the tube / Sensor 

damaged 

 CF2: Fan runs too fast 

 CF3: Output signal too high 

 CF4: D4 pin output high 

 CF5: Input duty cycle to ISR stuck 

high 

 CF6: Ball at bottom of the tube 

 CF7: System does not run Etc….. 

  Safety constraints 

 SC1- Ball Position Controller’s the output 

signal stays in between the boundary, duty 

cycle always in below the 100% when fan is 

moving 

 SC2-Ball Position Controller’s the output 

signal stays in between the boundary, duty 

cycle always in above the 0% when fan is 

moving 

 

5. HAZARD ANALYSIS USING FMEA, 

FTA, STPA ON SCCCS 

The STPA process aims to eliminate or control 

the system hazards through eliminating the 

unsafe control actions, which is reached by 

examining the control loop and the process 

models.  The system as a whole has to be 

examined.  By using STPA in our case, more 

hazards, failure modes and causal factors are 

identified,  By using a safety control structure 

and a general control flaws classification to 

analyze causal factors of each identified hazard, 

STPA may help the analyst to find more failure 

modes and causal factors.  This paper identifies 

65 scenarios found by FMEA where as 134 

identified by STPA.  FMEA results show that it 

identified only single fault cause of hazard 

where as STPA identified complex causes of 

hazards, multiple failures, and no component 

failures that lead to a hazard.  
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Table 4: hazard analysis methods comparison  

Attributes Methodology 

FT

A 

FME

A 

ST

PA 

Single failure event Yes Yes Ye

s 

Multiple failure events 

more than one event 

Yes No Ye

s 

System approach model 

(organizational-

environment-technical) 

No No Ye

s 

Able to address system 

interaction accidents 

No No Ye

s 

Applicable in design 

phase 

Yes Yes Ye

s 

Applied with limited 

system information 

No No Ye

s 

Ease of application No No Ye

s 

Suitability for large 

objects 

No Yes Ye

s 

Criticality analysis Yes No Ye

s 

Failure mode 

identification 

Yes No Ye

s 

 

 

6. CONCLUSION 

This approach is derived from research in the 

fields of systems engineering, software 

engineering, and safety engineering.  The 

purpose of the research in this paper was 

directed according to two themes. It is hoped 

that the results presented will help and provide 

new insights for anyone working on safety 

analysis and implementation.  The approaches 

described in this paper are focused on safety 

analysis in Safety Critical Computer Controlled 

System, and thus their practical use, it is hoped, 

will help to produce safer software. While the 

soundness of the concepts within the proposed 

Systems-theoretic approach has been 

demonstrated, further validation of the 

practicality of applying the concepts in an 

industrial setting would be beneficial. The most 

suitable approach for performing this additional 

validation would be to apply the approach on an 

industry-strength project.  However, the 

intention was to define a starting point to 

approach for Safety-Critical Systems in a more 

systematic, harmonized and practical way than 

what was found in the literature and standards.  

It is hoped that this paper has, at least in a small 

way, contributed to the foundations of a 

scientific discipline of software engineering of 

safety critical systems theory, as well as adding 

some practical new approaches to the specific 

problems of safety analysis in Safety Critical 

Computer Controlled Systems. 
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