
A Framework for Hazard Analysis of Safety-Critical Computer

Controlled Systems

Kadupukotla Satish Kumar Panchumarthy Seetha Ramaiah

Dept of Computer Science and
Engineering

Dept of Computer Science and Systems
Engineering

JNTU Kakinada Andhra University, Visakhapatnam

satishkmca@gmail.com psrama@gmail.com

Abstract
Safety-Critical Computer Controlled Systems

(SCCCS) are those systems whose failure could

result in loss of life, significant property

damage, or damage to the environment. There

are many well known examples in application

areas such as medical devices, aircraft flight

control, weapons, and nuclear systems. These

systems consist of a set of functional elements,

controlled by embedded processors that together

achieve a common objective. Most software-

related accidents occurred in SCCCS by

executing flawed programming and instructions.

The research literature currently lacks an

appropriate safety analysis and is fragmented

among activities. The aim of this paper is to

reduce the probability of unsafe system

conditions using a variety of management,

organization and technical measures. The

approach begins with conducting three different

types of hazard analysis techniques to SCCCS

such as Software Failure Mode and Effects

Analysis (SFMEA), Software Fault Tree

Analysis (SFTA) and Systems-Theoretic Process

Analysis (STPA). In this paper, the application

of systems-theoretic approach is implemented on

Ball Position Control System (BPCS) and

performed the comparison between traditional

methods and systemic methods for analysis and

design. The proposed systems-theoretic

approach can be applied to SCCCS in diverse

sectors to identify and control the identified

hazards. There is clear value in developing a

systems-theoretic approach to safety analysis in

SCCCS. Development of a SCCCS based on

our proposed software safety approach

significantly enhanced the safe operation of the

overall system.

1. INTRODUCTION

Safety-Critical Computer Controlled System is

safety-critical, integration of computation, social

networking, and physical processes. Safety

critical systems are used in multiple areas such

as medicine or healthcare, aerospace,

automotive, chemical processes, civil

infrastructure, energy, manufacturing,

transportation, entertainment, and consumer

appliances traffic management and safety,

automotive engineering, industrial and process

management, avionics and space equipment,

industrial robots, technical infrastructure

management, distributed robotic systems and

biological systems technology [1]. SCCCS

involve trans-disciplinary techniques, combining

concept of cybernetics, mechanic design, and

process science [2, 3, and 4]. The emerging

smart technologies, such as computers and

software, are changing the types of accidents in

these days. At the same time, traditional hazard

analysis techniques assume accidents are caused

by component failures or faults and over

simplify the role of humans [5, 6]. In these days,

most software-related accidents can be

monitored to partial or faulty program

requirements [7, 8]; however current hazard

analysis methods like Fault Tree Analysis

(FTA), Failure Mode Effect Analysis (FMEA)

analyze component failures and easily overlook

unsafe requirements.

Safety critical systems have been involved in

several accidents. Some well-known software-

related accidents in key industrial sectors are

described below, in brief. Some of the most

generally described software-related accidents in

Safety Critical Systems involved a computerized

radiation therapy machine called the Therac-25.

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 1

On June 4th, 1996 an unmanned Ariane 5 rocket

launched by the European Space Agency

exploded just forty seconds after its lift-off from

Kourou, French Guiana. In February 2010,

Toyota recalled its flagship high-technology

hybrid car, the Prius, due to a brake software

problem. The largest single American casualty

of the Gulf War occurred on February 25th

1991, when an Iraqi Scud missile struck a

barrack near Dhahran, Saudi Arabia, killing 28

soldiers.

Table 1: examples of accidents caused by

software failure

Industry Unsafe situation Year

Biomedica

l

Therac-25 Cancer

Radiation

Accident,

June

1985,

Software miss-

configuration in

CT scanner used

for brain perfusion

scanning.

August

2009-

February

2008

Automotive Toyota Prius Car

Recall

Feb. 2010

Aviation Korean Airways

Flight 801

Accident

Oct.1997

Defence USS Yorktown

Breakdown

Sep. 1997

Aerospace Ariane 5 Rocket

Failure,

Malaysia flight

370 crash

June

1996,

March2014

1.1 Implications for SCCCS

For safety critical systems, the implications are

clear - a single software-related failure leading

to an accident may have extremely severe

consequences. As computers are deployed in

more and more safety critical applications, it is

becoming obvious that there are still many

significant problems to be solved. The real-life

software failure accidents we have described

earlier emphasize the need for improvement in

both the management and technical aspects of

safety critical systems development and

deployment. The diversity of current standards

and practices, and disagreement over concepts

such as the use of Safety Integrity Levels (SILs)

illustrate the absence of common understanding

and agreement within the industry on the best

route to improved products.

Software engineering of a safety-critical system

requires a clear understanding of the software‘s

role in, and interactions with, the system [9],

[10]. The development of safety-critical systems

demands a different, more rigorous approach

than most other computer applications. As

safety-critical systems are often real-time control

systems they require the utmost care in their

specification, design, implementation, operation

and maintenance, as they could lead to injuries

or loss of lives and in-turn result in financial loss

[11], [12].

They require several disciplines that are still

unfamiliar to many programmers and technology

managers like safety engineering, software

engineering of critical systems, and formal

methods. Safety engineering teaches how to

design systems that remain safe even when

hardware or software fails. Software engineering

provides methods for developing complex

programs systematically. Formal methods are

mathematically based techniques for increasing

product reliability that overcome some of the

limitations of trial-and-error testing and

subjective reviews.

1.2 Safety-related terms:

Accident: An unwanted and surprising event

that outcomes in an [unacceptable] level of loss

[13].

Hazard: A system state or set of conditions that,

together with a particular set of worst-case

environmental conditions, will lead to an

accident (loss) [14].

Safety: The freedom from accidents [13].

Software Safety: Software safety is a

component of overall system safety. Software

safety can be defined as:

 features and procedures which ensure

that

 a product performs predictably

under normal and abnormal

conditions, and

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 2

 the likelihood of an unplanned

event occurring is minimized

and its consequences

controlled and contained

 thereby preventing accidental injury or

death, whether intentional or

unintentional

The notion of software safety was first

mentioned in the MIL-STD-1574A (1979)

which required analysis of software to identify

and eliminate software errors relating to safety

critical commands and control functions of

space and missile systems. Since then, the role

of software has becoming increasingly important

and is being used in many critical applications,

such as avionics, vehicle control systems,

medical systems, manufacturing, power systems,

and sensor networks [15, 16].

Safety: Freedom from those conditions that can

cause mishaps [14].

Component failure accidents: An accident that

results from component failures, including the

possibility of multiple and cascading failures

[14].

Component interaction accident: An accident

that arises in the interactions among system

components (electromechanical, digital, human,

and social) rather than in the failure of

individual components [14].

Goal for the paper is need to expand our view of

safety such as technical, human, organizational

and need to understand the whole system of

interactions and need to build in safety from the

start. Technical factors focus on independent

random failures, but other technical problems

pose growing challenge there are design errors,

incomplete requirements, incorrect assumptions.

The ultimate goal is to develop foundations and

techniques for building safe and effective Safety

critical computer controlled system.

This paper proposes a hazard-based safety-

driven model-based system engineering

methodology on SCCCS. The approaches

described in this paper are focused on achieving

and improving safety analysis process in

SCCCS. This paper identifies the methodology

for achieving the quality safety analysis of

SCCCS. It gives a framework for integrating

this methodology in the software development

process. This paper does not seek to present

metrics for each of the proposed quality of

software safety. Identification and evaluation

of metrics for each of the safety analysis is not

within the scope of this research. Practical

validation of the proposed model is

demonstrated by the implementation of case

study Ball Position Control system (BPCS).

2. MATERIALS AND METHODS

Safety-critical system failures may lead to

catastrophic accidents, which are dangerous to

the environment and to the people around. The

methods used to analyze the failures of SCS are

Failure Mode and Effects Analysis (FMEA),

Failure Modes Effects and Criticality Analysis

(FMECA), Fault Tree Analysis (FTA) [17],

Event Tree Analysis (ETA) and Failure Mode

Factors and Effects Analysis (FMFEA) [18].

The features of FMEA and FTA methods are

described briefly followed by various analysis

techniques like Graphical Requirement Analysis

(GRA), Deductive Cause-Consequence Analysis

(DCCA) and language like Unified Modeling

Language (UML) etc [19].

To model a process the most critical facet is to

catch the dynamic behavior. To clarify a bit in

detail, dynamic behavior means the behavior of

the system when it is running. So only static

behavior is not sufficient to model a system

rather dynamic behavior is more important than

static behavior. Over the years several

approaches for verification of software of a

system has been undertaken as shown in

following figure 1, which has been also applied

to SCS safety analysis, but with little success.

The inaccuracy in experimental safety

evaluation is evident from the large number of

recalls faced by several manufacturers of safety

critical systems.

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 3

Fig. 1 Safety assurance approaches for

software

a) Failure Mode and Effects Analysis

(FMEA)
Failure Mode and Effects Analysis (FMEA) [18]

is a method used for analysis to assure quality. It

is used for analyzing the failures of a system that

may lead to hazards. It is used to find their

potential failure of a product or a process, to

identify and estimate its importance and to

recognize appropriate actions to prevent the

potential failure of the system. FMEA is used for

analyzing the individual risks of a system. The

risks one-by-one are checked against each other

to recognize the failures. FMEA does not

provide a report on the total failure risk. For the

analysis of failures, fault-tree analysis is more

appropriate. The disadvantages of the FMEA

technique are they can identify only the major

failures of the system and the data flow of the

system cannot be represented.

b) Fault Tree Analysis (FTA)

Fault Trees [5] [18] are used for the analysis of a

system and to find the probability of failures. A

Fault Tree has its representation in the form of a

tree. It is used for analyzing the failures that may

occur due to various conditions. A deductive

analysis is used to find the failure that is placed

at the top of the tree and it provides alternatives

for the occurrences of failures. The limitations

of FTA are it is a complicated process and the

data flow is not represented.

FTA and FMEA are used for the analysis of a

system for enhancing system reliability during

the design but does not relate to a system

undergoing maintenance. The limitations of

FTA are it is a complicated process and the data

flow is not represented.

Systems-Theoretic Process Analysis

(STPA)provides an algorithmic and well-guided

analysis process that identifies the causes of

system hazards, including hardware component

failures, software errors, complex system

interactions, human errors, and inadequate

organization management, policy, and

procedures. The research approach used in this

paper in respect of software safety analysis of

SCCCS including hardware or software and

integration of system are practically

implemented for case study Ball Position

Control System (BPCS) which are developed in

the embedded system laboratory.

c) Systems-Theoretic Process Analysis

(STPA)

STPA is a new hazard research technique, based

on STAMP for SCS. It uses a collection of

interacting loops of control to evaluate SCS. It

can be used at any stage of the system life cycle,

from before designing to after implementation.

STPA technique is dependent on the following

ways: define system hazards and related safety

constraints, develop safety control structure for

closed-loop system, recognize possibly unsafe

control actions, determine how potentially

insufficient control activities could happen.

There are several limitations of these

approaches. The majority of software related

injuries have involved errors in the

requirements, not problems of the software to

properly apply the requirements in SCCCS. A

second significant issue is that most typical

hazard research techniques such as FTA and

FMEA work on a preexisting design in SCS. But

systems and system styles have become so

complicated that patiently waiting until a design

is finished carrying out safety research on it is

impractical. The only hope for practical and

cost-effective safe design techniques in methods

is to develop safety in from the beginning.

This paper makes the claim that safety analysis

involves performing additional specialized

activities beyond basic good software

engineering practices. These involve additional

design, analysis, measurement and verification

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 4

activities that occur concurrently with the

software development activities. The paper

validates the proposed safety analysis approach

by presenting case study of laboratory

prototypes of Ball position control system

(BPCS). In addition, this paper will show that

traditional system safety and reliability analysis

techniques such as FMEA (Failure Mode and

Effect Analysis), FTA (Fault tree Analysis) and

Systems-Theoretic Process Analysis (STPA) can

be successfully applied to systems with

significant software content to complement the

dynamic verification techniques.

3. PROPOSED FRAMEWORK FOR

HAZARD ANALYSIS IN SCCCS

The development of safety-related systems relies

heavily on the identification and subsequent

analysis of system hazards. These hazards are

identified in the context of the operation of the

overall system in its operating environment. This

means that modifying the operational

environment may alter the hazards associated

with the system and that the safety of the system

components will depend directly on the top level

hazards [20]. This in turn implies that software

safety must be considered in the context of the

overall system in its operating environment, and

that the hazards applicable to the software must

be related to those hazards identified at the top

level. Therefore an important task of system

safety analysis is to associate, where possible,

potential hazards identified at the top level with

the system components.

3.1 System Safety Analysis Lifecycle

Systems are comprised of many components

such as electrical, software, and mechanical.

Development of such systems follow a lifecycle

paradigm with many phases [21, 22], this

lifecycle is generally divided into system

requirements analysis and specification, system

design, system implementation, integration and

test. System design phase can spawn many other

lifecycles depending on the various system

components [23]. Similarly electrical and

mechanical lifecycles are spawned for their

respective subsystems.

3.2 Software Safety Analysis Lifecycle

Figure 2 illustrates the software safety

analysis lifecycle, which is integrated with the

software development lifecycle. The software

development lifecycle is divided into

requirements analysis and specification, design,

implementation, and test phases. Similarly, we

divide the software safety analysis lifecycle into

requirements safety analysis, design safety

analysis, code safety analysis, and test safety

analysis. Each software safety analysis phase is

a sub-activity of the corresponding development

phase. The input to each phase of the software

safety analysis lifecycle is the software

decomposition from the corresponding

development phase, and the safety faults

identified at the previous safety analysis phase.

Except for the test safety analysis, the output of

each phase of the software safety analysis

lifecycle is the safety requirements, fault tree,

and hazard dictionary for that phase. The output

of test hazard analysis is the outcome of the

execution of safety test cases. Each phase of the

software safety analysis lifecycle is performed

iteratively and concurrently within the

corresponding development lifecycle.

Fig. 2 Software safety analysis lifecycle

integrated with software development lifecycle

Good requirements have several useful

properties, such as being consistent, necessary,

and unambiguous. The basis of sound design for

a SCCCS is the identification, through

systematic analysis, of the hazards that the

system might encounter in operation. Traditional

safety analysis techniques such as SFTA and

SFMEA can indeed be successfully applied to

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 5

systems with significant software content. For

SCCCS, software design must enforce safety

constraints using STPA technique. Testing

safety analysis is intended to supplement the

existing requirements-based testing. The

analysis of each hazard may involve use of

common hazard analysis techniques such as

Fault Tree Analysis (FTA) and Failure Modes

and Effects Analysis (FMEA). FTA is a top

down technique, beginning with the hazard as

the top event as the result of a cause-effect

relationship. By tracing backwards from effects

to causes, we discover intermediate causes of the

hazard. These intermediate causes are combined

in the FTA using logical relationships, namely

‘AND’ and ‘0R’. Each branch of the FTA

terminates with an internal or external condition.

FMEA is a bottom up technique, typically used

to examine the consequences of failures in

system components. STPA, or Systems-

Theoretic Process Analysis, is a new hazard

analysis technique with the same goals as any

other hazard analysis technique, that is, to

identify scenarios leading to identified hazards

and thus to losses so they can be eliminated or

controlled. STPA is based on systems theory

while traditional hazard analysis techniques have

reliability theory at their foundation. STPA was

designed to also address increasingly common

component interaction accidents, which can

result from design flaws or unsafe interactions

among non-failing (operational) components. In

fact, the causes identified using STPA are a

superset of those identified by other techniques.

4. STPA ANALYSIS OF SAFETY-

CRITICAL COMPUTER CONTROLLED

SYSTEMS: BALL POSITION CONTROLL

SYSTEM (BPCS)

The central objective of the BPCS system is to

regulate the flow of air into a plastic tube so as

to keep a small light weight ball suspended at a

predetermined height called the set-point.

Increasing the flow raises the ball and

decreasing the flow lowers it. The BPCS

experiment consists of: 3-foot long white plastic

tube, light weight ball, DC motor fan, and

ultrasonic sensor circuit and 89S52 micro

controller. The proposed framework for hazard

analysis of SCCCS in the BPCS consists of the

following criteria:

 Design of control structure.

 Identification of unsafe control actions

and causal factors.

 Creation of hazard log.

 Apply analysis to sub system

components.

 Perform safety-guided design process.

Each criteria of the model is integrated into

BPCS development process as described below.

Here the system objectives are defined as Allow

system to reduce the probability of unsafe

system conditions through using a variety of

physical, organization, cyber measures.

A) System and Software Hazard

identification

A safety-driven design should start with

identifying accidents and then defining the

system hazards which would cause these

accidents to occur. The hazards here can be

defined as system states or a set of conditions

that, together with a particular set of hazardous

conditions, will lead to an accident [24]. Hazard

is a state of system that leads to accidents [25].

The system-level hazard relevant to an accident

includes:

H1 Ball Position Controller’s Output signal

is too high

H2 Ball Position Controller’s Output signal

too low

H3 Ball Position Controller’s Loss of output

signal to drive circuit

H4 Analog to Digital converter’s failure to

convert position (in hardware)

b) Identification of safety constraints

After the system hazards are defined, they

should be translated into the corresponding

safety constraints, which are restrictions on how

the system can achieve its purpose.

hazards Safety constraints (SC)

H1 SC1: Ball Position Controller’s the

output signal stays in between the

boundary, duty cycle always in

below the 100% when fan is moving

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 6

H2 SC2: Ball Position Controller’s the

output signal stays in between the

boundary, duty cycle always in

above the 0% when fan is moving

H3 SC3: Ball Position Controller’s the

output signal stays in between the

boundary, duty cycle always in

above the 0% when fan is moving

c) Identify unsafe control actions for BPCS

Once the hazards and related safety constraints

have been defined, a typical socio-technical

hierarchical structure with safety control

processes, which is called hierarchical safety

control structure, should be described. The next

step is to develop the safety control structure for

the system. The operational objective of the

system is to maintain the ball at a predefined

height in the tube. The software in the

microprocessor provides the control mechanism;

it implements a proportional controller (P-

controller)-that is, the output signal is

proportional to the amount of error in the ball’s

position relative to the set-point. A schematic

diagram of the system is shown in Figure 3.

Fig. 3 Block diagram of the closed loop control

system

d) Identify unsafe control actions for BPCS

The STPA process is used to analyze each of the

high-level hazards. The two steps of STPA

include identifying unsafe control of the system

and determining how these control action could

occur. A controller can provide unsafe control

in the following four ways:

 A control action is not provided, missing

or not followed.

 A control action is provided, but is

wrongly provided.

 A control action is provided at the

wrong timing, earlier or later than the

required timing, or out of sequence with

other control actions.

 The control action is stopped too early

or applied too long.

After the safety control structure in system-level

has been defined, the next step is to identify the

potential inadequate control, which may drive

the system into a hazardous state. STPA is a

systemic method used for hazard analysis. This

model considers hazards and causes in a

systemic way rather than just based on

component failures or failure events. At this

level, Micro controller becomes a controller for

the two lower controlled processes: Analog to

Digital converter, Motor driver. Micro

controller maintains the overall system, A to D

converter and Motor driver processing.

Table 3: Unsafe control actions for BPCS

C

ont

rol

Ac

tio

n

Not

providing

cause of

hazards

provid

ing

cause of

hazards

Inco

rrect

timin

g/

order

Stop

ped

too

soon

Ou

tpu

t

sig

nal

Ball

controller not

provides

Output signal

within

boundary

command

when the duty

cycle goes to

100%.

Ball

controller not

provides

Output signal

within

boundary

Ball

controll

er

provides

Output

signal

comman

d when

the duty

cycle

goes to

100%.

Ball

controll

er

provides

Ball

contro

ller

provi

des

Outpu

t

signal

comm

and

too

late or

too

early

Ball

contr

oller

provi

des

Outp

ut

signal

com

mand

too

soon

or too

long

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 7

command

when the fan

blows at the

full speed.

Output

signal

too high

comman

d when

the fan

blows at

the full

speed

e) Identify how the safety constraints could be

violated for BPCS

After hazards have been identified, the following

step should identify causal factors, which are

very useful to figure out mitigating features

against the hazard. Because hazards result from

inadequate control and enforcement of safety

constraints, the causal factors can be understood

in terms of control flaws.

 Ball at top of the tube / Sensor damaged

 Fan runs too fast

 Output signal too high

 D4 pin output high

 Input duty cycle to ISR stuck high

 Ball at bottom of the tube

 System does not run

 Fan runs too slow

 Fan does not run

 Loss of output signal to drive circuit

 Output too low

 Connector

 Failure to initialize input register

 Failure to initialize output register

 Failure to initialize ISR

 Loss of output signal to drive circuit

 Output signal too high

 Output signal too low

 Loss of output signal to drive circuit

 Incorrect output data

 Response data too slow

 Dc motor fan runs too fast

 Dc motor fan does not run or runs too

slow

 Dc motor fan runs too fast

 Dc motor fan does not run or run too

slow



f) Hazard list and hazard log

Hazard

H1. Ball Position Controller’s Output signal is

too high.

System Element

Micro controller, Input control circuit, Output

control circuit

Causal Factors

 CF1: Ball at top of the tube / Sensor

damaged

 CF2: Fan runs too fast

 CF3: Output signal too high

 CF4: D4 pin output high

 CF5: Input duty cycle to ISR stuck

high

 CF6: Ball at bottom of the tube

 CF7: System does not run Etc…..

 Safety constraints

 SC1- Ball Position Controller’s the output

signal stays in between the boundary, duty

cycle always in below the 100% when fan is

moving

 SC2-Ball Position Controller’s the output

signal stays in between the boundary, duty

cycle always in above the 0% when fan is

moving

5. HAZARD ANALYSIS USING FMEA,

FTA, STPA ON SCCCS

The STPA process aims to eliminate or control

the system hazards through eliminating the

unsafe control actions, which is reached by

examining the control loop and the process

models. The system as a whole has to be

examined. By using STPA in our case, more

hazards, failure modes and causal factors are

identified, By using a safety control structure

and a general control flaws classification to

analyze causal factors of each identified hazard,

STPA may help the analyst to find more failure

modes and causal factors. This paper identifies

65 scenarios found by FMEA where as 134

identified by STPA. FMEA results show that it

identified only single fault cause of hazard

where as STPA identified complex causes of

hazards, multiple failures, and no component

failures that lead to a hazard.

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 8

Table 4: hazard analysis methods comparison

Attributes Methodology

FT

A

FME

A

ST

PA

Single failure event Yes Yes Ye

s

Multiple failure events

more than one event

Yes No Ye

s

System approach model

(organizational-

environment-technical)

No No Ye

s

Able to address system

interaction accidents

No No Ye

s

Applicable in design

phase

Yes Yes Ye

s

Applied with limited

system information

No No Ye

s

Ease of application No No Ye

s

Suitability for large

objects

No Yes Ye

s

Criticality analysis Yes No Ye

s

Failure mode

identification

Yes No Ye

s

6. CONCLUSION

This approach is derived from research in the

fields of systems engineering, software

engineering, and safety engineering. The

purpose of the research in this paper was

directed according to two themes. It is hoped

that the results presented will help and provide

new insights for anyone working on safety

analysis and implementation. The approaches

described in this paper are focused on safety

analysis in Safety Critical Computer Controlled

System, and thus their practical use, it is hoped,

will help to produce safer software. While the

soundness of the concepts within the proposed

Systems-theoretic approach has been

demonstrated, further validation of the

practicality of applying the concepts in an

industrial setting would be beneficial. The most

suitable approach for performing this additional

validation would be to apply the approach on an

industry-strength project. However, the

intention was to define a starting point to

approach for Safety-Critical Systems in a more

systematic, harmonized and practical way than

what was found in the literature and standards.

It is hoped that this paper has, at least in a small

way, contributed to the foundations of a

scientific discipline of software engineering of

safety critical systems theory, as well as adding

some practical new approaches to the specific

problems of safety analysis in Safety Critical

Computer Controlled Systems.

REFERENCES

[1] Khaitan et al., "Design Techniques and

Applications of Cyber Physical Systems: A

Survey", IEEE Systems Journal, 2014.

[2] Hancu, O; Maties, V.; Balan, R.; Stan, S.

(2007), Mechatronic approach for design and

control of a hydraulic 3-dof parallel robot, The

18th International DAAAM Symposium,

"Intelligent Manufacturing & Automation:

Focus on Creativity, Responsibility and Ethics

of Engineers".

[3] F, E.A., Seshia, S.A.: Introduction to

Embedded Systems - A Cyber-Physical Systems

Approach, LeeSeshia.org, 2011.

[4] Suh, S.C., Carbone, J.N., Eroglu, A.E.:

Applied Cyber-Physical Systems, Springer

2014, Rad, Ciprian-Radu; Hancu, Olimpiu;

Takacs, Ioana-Alexandra; Olteanu, Gheorghe

(2015).

[5] Dekker S., Ten questions about human error:

a new view of human factors and system safety.

Human factors in transportation 2005, Mahwah,

N.J: Lawrence Erlbaum Associates Xix, pp. 230.

[6] Dekker, S., The field guide to understanding

human error 2006, Aldershot, England;

Burlington, VT: Ashgate xv, pp. 236.

[7] Lutz, R.R. Analyzing software requirements

errors in safety-critical, embedded systems in

IEEE International Conference on Software

Requirements, 1992.

[8] Leveson, N., SafeWare: system safety and

computers. 1995, Reading, Mass.: Addison-

Wesley, Xvii, pp. 680.

[9] Robyn R. Lutz, Software Engineering for

Safety: A Roadmap, Proceedings of the

Conference on The Future of Software

Engineering, June 04-11, 2000, Limerick,

Ireland, pp.213-226.

[10] John C. Knight. Safety Critical Systems:

Challenges and Directions Proceedings of the

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 9

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6853346
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6853346
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6853346

24th International Conference on Software

Engineering (ICSE), Orlando, Florida, 2002.

[11] Debra S. Herman, Software Safety and

Reliability Basics (ch.2), Software Safety and

Reliability: Techniques, Approaches, and

Standards of Key Industrial Sectors Wiley-IEEE

Computer Society Press, 2000, pp.13-31.

[12] Douglas C. Schmid, Adaptive Middleware:

Middleware for Real-time and Embedded

Systems Communications of the ACM, Volume

45 Issue 6, June 2002.

[13] Leveson, N., SafeWare: system safety and

computers. 1995, Reading, Mass.: Addison-

Wesley, xvii, pp. 680.

[14] Leveson, N., Engineering a safer world:

systems thinking applied to safety. Engineering

systems 2012, Cambridge, Mass.: MIT Press.

[15] P. V. Bhansali, Software Safety: Current

Status and Future Directions, ACM SIGSOFT

Software Engineering Notes, Volume 30

Number 1, page 1, January 2005

[16] Dongfeng Wang, Farokh B. Bastani, and I-

Ling Yen, Automated Aspect-Oriented

Decomposition of Process-Control Systems for

Ultra-High Depend-243 ability Assurance, IEEE

Transactions on Software Engineering, Vol. 31,

No. 9, September 2005.

[17] G Thangamani, Generalized Stochastic

Petri Nets for Reliability Analysis of Lube Oil

System with Common –Cause Failures,

American Journal of Computational and Applied

Mathematics, Scientific and Academic

Publishing, USA, 2012, pp. 152-158 [doi:

10.5923/j.ajcam.20120204.03] .

[18] N.G. Leveson and C. S. Turner, an

Investigation of the Therac-25 Accidents. IEEE

Computer, pp. 18- 41, March 1987.

[19]. Perneger, T.V., the Swiss cheese model of

safety incidents: are there holes in the metaphor?

BMC health services research, 2005. Pp.71.

[20] Hazard Analysis, Hazardous Industry

Planning Advisory, Paper No 6, Planning, NSW

Government, Chapter 2, January 2011.

[21] J.D Sailor, “System Engineering: An

Introduction”, in System and Software

Requirements Engineering, edited R.H.Thayar

and M.Dorfman, pp.35-47,1990.

[22] R.H.Thayar and W.W.Royce, “ Software

System Engineering” , in System and Software

Requirement Engineering, edited R.H. Thayar

and M.Dorfman, pp. 77-116, 1990

[23] M.Dorfman, “ System and Software

Requirements Engineering”, in System and

Software Requirements Engineering, edited R.H.

Thayar and M.Dorfman, 1990.

[24] Lee, E.A., Seshia, S.A.: Introduction to

Embedded Systems - A Cyber-Physical Systems

Approach, LeeSeshia.org, 2011.

[25] Suh, S.C., Carbone, J.N., Eroglu, A.E.:

Applied Cyber-Physical Systems, Springer

2014, Rad, Ciprian-Radu; Hancu, Olimpiu;

Takacs, Ioana-Alexandra; Olteanu, Gheorghe

(2015).

IJRDO - Journal of Computer Science and Engineering ISSN: 2455-7668

Volume-2 | Issue-9 | September, 2016 | Paper-1 10

