

Concurrency Control in Distributed Database System

--

 1.Anshu Singla ,2.Anjani Kumar Singha, 3.Sudhir Kumar Gupta

1.Department of Computer Science,Jamia Millia Islamia, New Delhi
Email id::anshu008in@gmail.com
2.Department of Computer Science and Engineering, Gurukula Kangri Vishwavidyalaya Haridwar, Uttarakhand,Email:Anjani348@gmail.com
3.Guru jambheshwar university of science and technology,email: sudhirvns0542@gmail.com .

Abstract: This paper reviews the coverage of concurrency control in Distributed Network. A distributed network becomes

more popular, the need for improvement in distributed database management systems becomes even more important. The

main challenges are identified as-: (1)Preserving the ACID property atomicity, consistency, isolation and durability

property when concurrent transactions perform read and write operation; (2) provides recovery method when distributed

data is fail; (3)whatever method that is chosen they must provide feasible solutions with respect to performance.

Keywords: Distributed Database, Distributed Design, Fragmentation, Replication, Allocation, Concurrency control,

Transaction

I. Introduction
In today’s world of universal dependence on information systems, with the rising need for secure, reliable and accessible

information in today’s business environment, the need for distributed databases and client/ server applications is also

increasing. A distributed database is a single logical database that is spread physically across computers in multiple

locations that are connected by data communication links. Distributed database is a kind of virtual database whose

component parts are physically stored in a number of distinct real databases at a number of distinct locations. The users at

any location can access data at anywhere in the network as if the data were all stored at the user’s own location. A distributed

database management system is the software that manages the Distributed Databases, and provides an access mechanism that

makes this distribution transparent to the user. The objective of a distributed database management system (DDBMS) is to

control the management of a distributed database (DDB) in such a way that it appears to the user as a centralized database.

This image of centralized environment can be accomplished with the support of various kinds of transparencies such as:

Location Transparency, Performance Transparency, Copy Transparency, Transaction Transparency, Transaction

Transparency, Fragment Transparency, Schema Change Transparency, and Local DBMS Transparency. Concurrency control

is also an important issue in database systems. Concurrency control is the process of coordinating concurrent accesses to a

database in a multi-user database management system (DBMS). There exist a number of methods that provide concurrency

control. Some of the methods are: Two phase locking, Time stamping, Multi-version timestamp etc.

II. Motivation

There are various business conditions that encourage the use of distributed databases:

• Data communications costs and reliability: If the data is geographically distributed and the applications are related to

these data, it may be much more economical, in terms of communication costs, to partition the application and do the

processing at each site. On the other hand, the cost of having smaller computing powers at each site is much more less than

the cost of having an equivalent power of a single mainframe

• Database recovery: the process of restoring data that has been lost, accidentally deleted, corrupted or made

inaccessible for any reason. In enterprise information technology (IT), data recovery typically refers to the restoration of

data to a desktop, laptop, server, or external storage system from a backup

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 70

• Data sharing: the practice of making data used for scholarly research available to other investigators. Replication

has a long history in science. The motto of The Royal Society is 'Nullius in verba', translated "Take no man's word for

it."

• Distribution and autonomy of business units: Divisions, departments, and facilities in modern organizations are often

geographically distributed, often across national boundaries. Often each unit has the authority to create its own information

systems, and often these units want local data over which they can have control. Business mergers and acquisitions often

create this environment.

•Improved Performance: Performance improvement, by its nature, is iterative. For this reason, removing the

first bottleneck might not lead to performance improvement immediately, because another bottleneck might

be revealed. Also, in some cases, if serialization points move to a more inefficient sharing mechanism, then

performance could degrade. With experience, and by following a rigorous method of bottleneck elimination,

applications can be debugged and made scalable

•Increased reliability and availability: When a centralized system fails, the database is unavailable to all users. In contrast
to centralized systems, distributed system will continue to function at some reduced level, however, even when a component
fails.

•Faster response: w e l l - s u i t e d f o r l o o s e l y d e f i n e d d a t a s t r u c t u r e s t h a t ma y e v o l v e o v e r t i m e .

 In-memory database management system (IMDBMS) - provides faster response times and better performance.

 1...DISTRIBUTED DATABASE DESIGN:Distributed databases can be homogenous or heterogeneous. In a

homeogenous distributed database system, all the physical locations have the same underlying hardware and run the

same operating systems and database applications. In a heterogeneous distributed database, the hardware, operating

systems or database applications may be different at each of the locations.

A. Data Fragmentation:

In Distributed Databases, we need to define the logical unit of Database Distribution and allocation. The database may be

broken up into logical units called fragments which will be stored at different sites. The simplest logical units are the tables

themselves. Three Types of Data Fragmentation are:

 Horizontal fragmentation: refers to the division of a relation into subsets (fragments) of tuples (rows).

Example:

Say we have this relation

customer_id | Name | Area | Payment Type | Sex
 1 | Bob | London | Credit card | Male
 2 | Mike | Manchester | Cash | Male
 3 | Ruby | London | Cash | Female

Horizontal Fragmentation are subsets of tuples
(rows)

Fragment 1

customer_id | Name | Area | Payment Type | Sex
 1 | Bob | London | Credit card | Male
 2 | Mike | Manchester | Cash | Male

Fragment 2

customer_id | Name | Area | Payment Type | Sex
 3 | Ruby | London | Cash | Female

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 71

 Vertical fragmentation: Vertical Fragmentation of a relation R produces fragments R1, ..,Rn, each of.

Example: Fragment 1

customer_id | Name | Area | Sex
 1 | Bob | London | Male
 2 | Mike | Manchester | Male
 3 | Ruby | London Female

Fragment 2

customer_id | Payment Type
 1 | Credit card
 2 | Cash
 3 | Cash

Hybrid fragmentation: Hybrid Fragmentation comprises the combination of characteristics of both Horizontal and Vertical

Fragmentation. Each fragment can be specified by a SELECT-PROJECT combination of operations. In this case the original

table can be reconstructed be applying union and natural join operations in the appropriate order.

B. Data Replication:

the frequent electronic copying data from a database in one computer or server to a database in another so that all users share

the same level of information. The result is a distributed database in which users can access data relevant to their tasks without

interfering with the work of others

III. Fundamentals of Transaction Management and Concurrency Control

Transaction: is a sequence of operations performed as a single logical unit of work. A logical unit of work must

exhibit four properties, called the atomicity, consistency, isolation, and durability (ACID) properties, to qualify

as a transaction.

Properties of Transaction: A Transaction has four properties that lead to the consistency and reliability of a distributed

database. These are Atomicity, Consistency, Isolation, and Durability.

 Atomicity: An atomic transaction is an indivisible and irreducible series of database operations such that either

all occur, or nothing occurs.

 Consistency: database systems refers to the requirement that any given database transaction must change

affected data only in allowed ways. Any data written to the database must be valid according to all defined

rules, including constraints, cascades, triggers, and any combination thereof

 Isolation: in the context of databases, specifies when and how the changes implemented in an operation become

visible to other parallel operations. Transaction isolation is an important part of any transactional system. It

deals with consistency and completeness of data retrieved by queries unaffecting a user data by other user

actions. A database acquires locks on data to maintain a high level of isolation

 Durability: databases is the property that ensures transactions are saved permanently and do not accidentally

disappear or get erased, even during a database crash. This is usually achieved by saving all transactions to a

non-volatile storage medium

Concurrency Control:A data b a s e ma n a g e me n t s y s t e ms (D B M S) c o n c e pt t h a t i s u s e d t o a d d r e s s

c o n f l i c t s w i t h t h e s i mu l t a n e o u s a c c e s s i n g o r a l t e r i n g o f da ta t ha t c a n o c c u r w i t h a mu l t i -
u s e r s y s t e m .

IV. Distributed Concurrency Control Algorithms:

In this paper, we consider some of the distributed concurrency control algorithms. We summarize the salient aspects of these

four algorithms in this section. In order to do this, we must first explain the structure that we have assumed for distributed

transactions. Before discussing the algorithms, we need to get an idea about the distributed transactions.

Distributed Transaction: A distributed transaction is a transaction that runs in multiple processes, usually on several

machines. Each process works for the transaction. Distributed transaction processing systems are designed to facilitate

transactions that span heterogeneous, transaction-aware resource managers in a distributed environment. The execution of a

distributed transaction requires coordination between a global transaction management system and all the local resource

managers of all the involved systems. The resource manager and transaction processing monitor are the two primary elements

of any distributed transactional system.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 72

Distributed transactions, like local transactions, must observe the ACID properties. However, maintenance of these properties

is very complicated for distributed transactions because a failure can occur in any process. If such a failure occurs, each

process must undo any work that has already been done on behalf of the transaction.

A distributed transaction processing system maintains the ACID properties in distributed transactions by using two features:

 Recoverable processes. Recoverable processes log their actions and therefore can restore earlier states if a failure
occurs.

 A commit protocol. A commit protocol allows multiple processes to coordinate the committing or aborting of a

transaction. The most common commit protocol is the two-phase commit protocol.

 Distributed Two-Phase Locking (2PL):

Two-phase locking (2PL) is a concurrency control method that guarantees serializability. It is also the name of the
resulting set of database transaction schedules (histories). The protocol utilizes locks, applied by a transaction to
data, which may block (interpreted as signals to stop) other transactions from accessing the same data during the
transaction's life

The 2PL Protocol oversees locks by determining when transactions can acquire and release locks. The 2PL protocol forces each

transaction to make a lock or unlock request in two steps:

 Growing Phase(Expanding phase): locks are acquired and no locks are released.

 Shrinking Phase: locks are released and no locks are acquired..

The transaction first enters into the Growing Phase, makes requests for required locks, then gets into the Shrinking phase

where it releases all locks and cannot make any more requests. Transactions in 2PL Protocol should get all needed locks

before getting into the unlock phase. While the 2PL protocol guarantees serializability, it does not ensure that deadlocks do

not happen. So deadlock is a possibility in this algorithm, Local deadlocks are checked for any time a transaction blocks, and

are resolved when necessary by restarting the transaction with the most recent initial startup time among those involved in the

deadlock cycle. Global deadlock detection is handled by a “Snoop” process, which periodically requests waits-for

information from all sites and then checks for and resolves any global deadlocks.

 Wound-Wait (WW):

The second algorithm is It is a preemptive technique for deadlock prevention. It is a counterpart to the wait-die scheme. When

Transaction Ti requests a data item currently held by Tj, Ti is allowed to wait only if it has a timestamp larger than that of Tj,

otherwise Tj is rolled back (Tj is wounded by Ti).

In this scheme, if a transaction requests to lock a resource (data item), which is already held with conflicting lock by some

another transaction, one of the two possibilities may occur

Example-: Wound-Wait algorithm

 T1 is allowed to

t(T1) > t(T2) Wait

t(T1) < t(T2) Abort and rolled back

t(T1) > t(T2) -: If requesting transaction [t(T1)] is younger than the transaction [t(T2)] that has holds lock on requested data

item then requesting transaction [t(T1)] has to wait.

t(T1) < t(T2) -: If requesting transaction [t(T1)] is older than the transaction [t(T2)] that has holds lock on requested data

item then requesting transaction [t(T1)] has to abort or rollback.

Suppose that Transactions T22, T23, T24 have time-stamps 5, 10 and 15 respectively . If T22requests a data item held by T23,

then data item will be preempted from T23 and T23 will be rolled back. If T24 requests a data item held by T23, then T24 will

wait.

 Basic Timestamp Ordering (BTO):

We assume that the Transaction Manager (TM) attaches an appropriate timestamp to all read and write operations. In the BTO,

the scheduler at each Data Manager (DM), keeps track of the largest timestamp of any read and write operation processed thus

far for each data object. These timestamps may be denoted by R-ts(object) and W-ts(object), respectively. Let us also make the

following notations:

read(x,TS) --> Read request with timestamp TS on a data object x.

write(x,v,TS) --> Write request with timestamp TS on a data object x. v is the value to be assigned to x.

A read request is handled in the following manner:

If TS < W-ts(x) then

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 73

reject read request and abort corresponding transaction
else
execute transaction
Set R-ts(x) to max{R-ts(x), TS}

A write request is handled in the following manner:

If TS < R-ts(x) or TS < W-ts(x) then

reject write request
else
execute transaction
Set W-ts(x) to TS.

If a transaction is aborted, it is restarted with a new timestamp. This can result in a cyclic restart where a transaction can

repeatedly restart and abort without ever completing. Another disadvantage is that it has storage overhead for maintaining

timestamps (two timestamps must be kept for every data object)

 Distributed Optimistic(OPT):The fourth algorithm is L o c k i n g b a d b e c a u s e :

 overhead not present in sequential case. Even read-only transactions need to use locks.

 lack of general-purpose deadlock free locking protocols.

 large parts of DB on secondary storage - concurrency significantly lowered when it is necessary to leave

congested node while accessing disk

 to allow transaction to abort, need to hold on to locks until EOT

 locking may only be necessary in worst case

 optimistic: reading a value/pointer can never cause loss of integrity; reads are completely unrestricted, although

returning a value from a query is considered equivalent to a write.

 writes are severly restricted. Have read phase, validation phase, then write phase. During read, all writes are on local

copies. Validation ensures consistency across active transactions. Write phase is when local copies get written to global

DB.

 concurrency control procedures maintain sets of objects accessed by transaction. maintain read and write set for

transaction.

 serial equivalence: if have individual transactions that are executed concurrently, have serial equivalence if there exists

some serial sequence of the transactions that produce the final data structure. serial equivalence is sufficient (but not

necessary) for integrity of DB.

 validation of serial equivalence: assign each transaction a transaction number (TN), and explicitly force serializability.

Need one of these three conditions (for i

 Ti completes write phase before Tj starts read phase

 write set of Ti does not intersect read set of Tj, and Ti completes its write phase before Tj starts its write phase

 write set of Ti does not intersect read set or write set of Tj, and Ti completes its read phase before Tj completes its read

phase. (1) says Ti completes before Tj starts. (2) states writes of Ti don't affect read phase of Tj, and Ti finishes writing

before Tj starts writing, hence doesn't overwrite Tj. (3) similar to (2), but does not require that Ti finish writing before

Tj starts writing.

Assign transactions numbers when transaction enters validation, to prevent fast transactions from blocking behind slow

but earlier starting transactions.

 Serial validation: assign transaction nmber, validate, and do write phase all in critical section. Fine if one CPU and write

phase can take place in main memory. Otherwise too inefficient - not enough concurrency. If multiple CPUs, be more

clever about critical sections.

 Parallel validation: maintain set of active transactions (in read but not yet completed write phase); do validation against

all transactions in active set. To prevent an aborted transaction from causing further aborts, do multistage validation.

 analysis for large B-trees shows that optimistic concurrency control is a win - very rare that one insertion would cause

another concurrent insertion to restart. (Assumes random access to B-tree.)

V. Conclusion

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 74

In this paper we have discuss about the distributed database system that is considered to be more reliable than centralized

database system. We also describe the concurrency control algorithms-: distributed 2PL, wound-wait, basic timestamp

ordering and distributed optimistic algorithm .it is really important for database to have the ACID properties to perform.

References

[1] Gupta V.K., Sheetlani Jitendra, Gupta Dhiraj and Shukla Brahma Datta, Concurrency control and Security issues in
Distributed database system, Vol. 1(2),70-73, August (2012)

[2] Arun Kumar Yadav& Ajay Agarwal, An Approach for Concurrency Control in Distributed Database System, Vol. 1,

No. 1, pp. 137-141, January-June (2010)

[3] Navathe Elmasri, Database Concepts, Pearson Education, V edition (2008)

[4] Fundamentals of DBMS, Lakhanpal Publisher, III edition (2008)

[5] Swati Gupta, Kuntal Saroha, Bhawna, Fundamental Research of Distributed Database, IJCSMS International Journal

of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011

[6] Distributed Database:
ttp://wps.pearsoned.co.uk/wps/media/objects/10977/11240737/Web%20chapters/Chapter%2012_WEB.phd
f

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-2 | Issue-7 | July,2016 | Paper-10 75

