
 

 

   

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING 

 

AN INTRODUCTION TO TIME COMPLEXITY AND NP-COMPLETE 

 

       Upender Yadav                        Vikash Verma                          Parmod Saha 

Dronacharya college of engineering,       Dronacharya college of engineering,     Dronacharya college of engineering, 

Gurgaon, Haryana, India                             Gurgaon, Haryana, India                          Gurgaon, Haryana, India 

Upenderyadav1424@gmail.com               vermavikash153@gmail.com                  parmodsah000@gmail.com  

Ph: - +91 9810537193                                      ph: - +91 8802806339                              ph: - +91 9910852711 

ABSTRACT: 

The time complexity of an algorithm is the amount of computer time required by an algorithm 
to run to completion. Computational time complexity analyzes of evolutionary algorithms (EAs) 
have been performed since the mid-nineties. The first results were related to very simple 
algorithms, such as the (1+1)-EA, on toy problems. The objective of this paper is to review the 
time complexity knowledge seen in research work devoted on synthesis, optimization, and 
effectiveness of various sorting algorithms. We will examine different sorting algorithms in the 
lines and try to discover the tradeoffs between them.  
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INTRODUCTION: 

It all started with a machine. In 1936, Turing developed his theoretical computational model. He 

based his model on how he perceived mathematicians think. As digital computers were 

developed in the 40’s and 50’s, the Turing machine proved itself as the right theoretical model 

for computation. Quickly though we discovered that the basic Turing machine model fails to 

account for the amount of time or memory needed by a computer, a critical issue today but 

even more so in those early days of computing. The key idea to measure time and space as a 

function of the length of the input came in the early 1960’s by Hartmanis and Stearns. And thus 

computational complexity was born. In the early days of complexity, researchers just tried 

understanding these new measures and how they related to each other. We saw the first 

notion of efficient computation by using time polynomial in the input size. This led to 

complexity’s most important concept, NP-completeness, and its most fundamental question, 

whether P = NP.  

              The work of Cook and Karp in the early 70’s showed a large number of combinatorial 

and logical problems were NP-complete, i.e., as hard as any problem computable in 

nondeterministic polynomial time. The P = NP question is equivalent to an efficient solution of 
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any of these problems. In the thirty years hence this problem has become one of the 

outstanding open questions in computer science and indeed all of mathematics. In the 70’s we 

saw the growth of complexity classes as researchers tried to encompass different models of 

computations. One of those models, probabilistic computation, started with a probabilistic test 

for primality, led to probabilistic complexity classes and a new kind of interactive proof system 

that itself led to hardness results for approximating certain NP-complete problems.  

           In the 80’s we saw the rise of finite models like circuits that capture computation in an 

inherently different way. A new approach to problems like P = NP arose from these circuits and 

though they have had limited success in separating complexity classes, this approach brought 

combinatorial techniques into the area and led to a much better understanding of the limits of 

these devices from computations and most recently a deterministic algorithm for the original 

primality problem. 

             In the 90’s we have seen the study of new models of computation like quantum 

computers and propositional proof systems. Tools from the past have greatly helped our 

understanding of these new areas. 

    (1) ALGORITHM ANALYSIS: 

•          An algorithm is a finite set of precise instructions for performing a computation or 

for solving a problem.  

• What is the goal of analysis of algorithms? 

– To compare algorithms mainly in terms of running time but also in terms of 

other factors (e.g., memory requirements, programmer's effort etc.)  

• What do we mean by running time analysis? 

                         -       Determine how running time increases as the size of the problem increases    

 

       (1.1) Types of Algorithm Analysis: 

 Worst case 

 

a) Provides an upper bound on running time 

b) An absolute guarantee that the algorithm would not run longer, no 

matter what the inputs are 

 Best case 

a) Provides a lower bound on running time 

b) Input is the one for which the algorithm runs the fastest 
 

                                                             LOWER BOUND <= RUNNING TIME <= UPPER BOUND 
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 Average case 

a) Provides a prediction about the running time 

b) Assumes that the input is random 
 

(2) NP-COMPLETENESS: 

It was in the early 1970’s that complexity theory first flowered, and came to play a central role 

in computer science. It did so by focusing on one fundamental concept and on the results and 

ideas stemming from it. This concept was NP-completeness and it has proved to be one of the 

most insightful and fundamental theories in the mathematics of the last half century. NP-

completeness 

capturesthecombinatorialdifficultyofanumberofcentralproblemswhichresistedefficientsolution 

and provides a method for proving that a combinatorial problem is as intractable as any NP 

problem. By the late 1960’s, a sizable class of very applicable and significant problems which 

resisted polynomial time solution was widely recognized. These problems are largely 

optimization problems such as the traveling salesman problem, certain scheduling problems, or 

linear programming problems. They all have a very large number of possible solution where 

there is no obvious way to find an optimal solution other than a brute force search. As time 

passed and much effort was expended on attempts at efficiently solving these problems, it 

began to be suspected that there was no such solution. However, there was no hard evidence 

that this was the case nor was there any reason to suspect that these problems were in any 

sense difficult for the same reasons or in the same ways. The theory of NP-completeness 

provided precisely this evidence. Proving a problem in NP to be NP-complete tells us that it is as 

hard to solve as any other NP problem. Said another way, if there is any NP-complete problem 

that admits an efficient solution then every NP problem does so. The question of whether every 

NP problem has an efficient solution has resisted the efforts of computer scientists since 1970. 

It is known as the P versus NP problem and is among the most central open problems of 

mathematics. The fact that a very large number of fundamental problems have been shown to 

be NP-complete and that the problem of proving that P is not NP has proved to be so difficult 

has made this problem and the connected theory one of the most celebrated in contemporary 

mathematics. The P = NP problem is one of the seven Millennium Prize Problems and solving it 

brings a $1,000,000 prize from the Clay Mathematics Institute. Quite surprisingly, one of the 

earliest discussions of a particular NP-complete problem and the implications of finding an 

efficient solution came from Kurt G¨odel. In a 1956 letter to von Neumann [Har86, Sip83] 

G¨odel asks von Neumann about the complexity of what is now known to be an NP-complete 

problem concerning proofs in first-order logic and asks if the problem can be solved in linear or 

quadratic time. In fact, Go¨del seemed quite optimistic about finding an efficient solution. He 

fully realized that doing so would have significant consequences. It is worth noting that in about 

the same period there was considerable effort by Russian mathematicians working on similar 

combinatorial problems trying to prove that brute force was needed to solve them. Several of 

these problems eventually turned out to be NP-complete as well [Tra64]. The existence of NP-
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complete problems was proved independently by Stephen Cook in the United States and Leonid 

Levin in the Soviet Union. Cook, then a graduate student at Harvard, proved that the 

satisfiability problem is NP-complete [Coo71]. Levin, a student of Kolmogorov at Moscow State 

University, proved that a variant of the tiling problem is NP-complete [Lev73]. Researchers 

strove to show other interesting, natural problems NP-complete. Richard Karp, in a 

tremendously influential paper [Kar72], proved that eight central combinatorial problems are 

all NP-complete. These problems included the the clique problem, the independent set 

problem, the set cover problem, and the traveling salesman problem, among others. Karp’s 

paper presented several key methods to prove NP-completeness using reductions from 

problems previously shown to be NP-complete. It set up a general framework for proving NP 

completeness results and established several useful techniques for such proofs. In the following 

years, and continuing until today, literally thousands of problems have been shown to be NP 

complete. A proof of NP-completeness has come to signify the (worst case) intractability of a 

problem. Once proved NP-complete, researchers turn to other ways of trying to solve the 

problem, usually using approximation algorithms to give an approximate solution or 

probabilistic methods to solve the problem in “most” cases. Another fundamental step was 

taken around 1970 by Meyer and Stockmeyer [MS72], [Sto76]. They defined the polynomial 

hierarchy in analogy with the arithmetic hierarchy of Kleene. This hierarchy is defined by 

iterating the notion of polynomial jump, in analogy with the Turing jump operator. This 

hierarchy has proven useful in classifying many hard combinatorial problems which do not lie in 

NP. It is explored in more detail in Section 4.2. Of course, all problems in the polynomial 

hierarchy are recursive and in fact very simple problems within the vast expanse of all recursive 

sets. So are there natural problems which are recursive and are not captured by the hierarchy? 

The answers is yes and results in the exploration of several important larger complexity classes 

which contain the polynomial hierarchy. One such class is PSPACE, those problems which can 

be solved using work space which is of polynomial length relative to the length of the problem’s 

input. Just as with P and NP, the full extent of PSPACE is not known. PSPACE contains P and NP. 

It is not known if either of these conclusions are proper. Settling these questions would again 

be significant steps forward in this theory. The notion of PSPACE-completeness is defined very 

similarly to NP-completeness, and has been studies alongside the NP-completeness notion. 

Namely, a problem C is PSPACE complete if it is in PSPACE and if any other PSPACE problem can 

be reduced to it in polynomial time. As is the case with NP-complete problems, PSPACE-

complete problems are quite common and often arise quite naturally. Typical PSPACE-complete 

problems are or arise from generalized games such as hex or checkers played on boards of 

unbounded finite size (see [GJ79]). Beyond PSPACE lie the exponential time (EXPTIME) and 

exponential space complexity classes. A small number of natural problems have been shown 

complete for these classes (see [GJ79]), and as well EXPTIME is the smallest deterministic class 

which has been proved to contain NP. 

(3) STRUCTURAL COMPLEXITY: 
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By the early 1970’s, the definitions of time and space-bounded complexity classes were 

precisely established and the import of the class NP and of NP-complete problems realized. At 

this point effort turned to understanding the relationships between complexity classes and the 

properties of problems within the principal classes. In particular, attention was focused on NP-

complete problems and their properties and on the structure of complexity classes between 

LOGSPACE and PSPACE. We briefly survey some of these studies here. 

(3.1) The Isomorphism Conjecture  

In the mid-70’s, building on earlier work on G¨odel numberings [HB75, Har82] and in analogy 

with the well-known result of Myhill from computability theory [Myh55], Berman and 

Hartmanis [BH77, HB78] formulated their isomorphism conjecture. The conjecture stated that 

all NP complete sets are P-isomorphic (that is, isomorphic via polynomial time computable and 

invertible isomorphism). This conjecture served as a springboard for the further study of the 

structure of NP-complete sets. As evidence for their conjecture, Berman and Hartmanis and 

others [MY85, KMR87] were able to give simple, easily checkable properties of NP-complete 

sets which implied they were isomorphic. Using these, they proved that all of the known NP-

complete sets were in fact P-isomorphic. This conjecture remains an open question today. A 

positive resolution of the conjecture would imply that P is not equal to NP. Much effort was 

focused on proving the converse, that assuming P is not NP then the isomorphism conjecture 

holds. This remains an open question today. As the number of known NP-complete problems 

grew during the 1970’s, the structure and properties of these problems began to be examined. 

While very disparate, the NP-complete sets have certain common properties. For example, they 

are all rather dense sets. Density of a set is measured here simply in the sense of how many 

string of a given length are in the set. So (assuming a binary encoding of a set) there are 2n 

different strings of length n. We say that set S is sparse if there is a polynomial p(n) which 

bounds the number of strings in S of length n, for every n. It is dense otherwise. All known NP-

complete sets are dense. One consequence of the isomorphism conjecture is that no NP-

complete set can be sparse. As with the isomorphism conjecture, this consequence implies that 

P is not NP and so it is unlikely that a proof of this consequence will soon be forthcoming. 

Berman and Hartmanis also conjectured that if P in not equal to NP there are no sparse NP-

complete sets. This conjecture was settled affirmatively by the famous result of Mahaney 

[Mah82]. Mahaney’s elegant proof used several new counting techniques and had a lasting 

impact on work in structural complexity theory. 

(3.2) The Polynomial Hierarchy  

While numerous hard decision problems have been proved NP-complete, a small number are 

outside NP and have escaped this classification. An extended classification, the polynomial time 

hierarchy (PH), was provided by Meyer and Stockmeyer [Sto76]. They defined the hierarchy, a 

collection of classes between P and PSPACE, in analogy with Kleene’s arithmetic hierarchy. The 

polynomial time hierarchy (PH) consists of an infinite sequence of classes within PSPACE. The 

bottom (0th) level of the hierarchy is just the class P. The first level is the class NP. The second 
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level are all problems in NP relative to an NP oracle, etc. Iterating this idea to all finite levels 

yields the full hierarchy. If P=PSPACE then the whole PH collapses to the class P. However, quite 

the opposite is believed to be the case, namely that the PH is strict in the sense that each level 

of the hierarchy is a proper subset of the next level. While every class in the PH is contained in 

PSPACE, the converse is not true if the hierarchy is strict. In this case, PSPACE contains many 

problems not in the PH and in fact has a very complex structure (see, for example, [AS89]). 

(3.3) Alternation 

 Another unifying and important thread of results which also originated during the 1970’s was 

the work on alternation initiated out by Kozen, Chandra and Stockmeyer [CKS81]. The idea 

behind alternation is to classify combinatorial problems using an alternating Turing machine, a 

generalization of a nondeterministic Turing machine. Intuitively a nondeterministic Turing 

machine can be thought of as having an existential acceptance criterion. That is, an input to the 

TM is accepted if there exists a computation path of the machine which results in acceptance. 

Similarly, we could consider a universal acceptance criterion whereby a nondeterministic 

machine accepts of all computation paths lead to acceptance. Restricting ourselves to 

polynomial length alternation, we see that NP can be characterized as those problems accepted 

by nondeterministic TM running in polynomial time using the existential acceptance criterion. 

Similarly, the universal acceptance criterion with the same type of machines defines the class 

co-NP consisting of problems whose complements are in NP. Furthermore, we can iterate these 

two acceptance methods, for example asking that there exist an path of a TM such that for all 

paths extending that path there exists an extension of that path which accepts. This idea gives a 

machine implementation of the notion of alternations of universal and existential quantifiers. It 

is not hard to see that finitely many alternations results in the finite levels of the polynomial 

time hierarchy and that alternating polynomial time is the same thing as PSPACE. Other 

relationship between time and space classes defined using alternation can be found in [CKS81], 

for example, alternating log space = P and alternating PSPACE = EXPTIME. 

 (3.4) LOGSPACE  

To this point all the complexity classes we have considered contain the class P of polynomial 

time computable problems. For some interesting problems it is useful to consider classes within 

P and particularly the seemingly smaller space classes of deterministic log space, denoted L, and 

nondeterministic log space, denoted NL. These classes provide a measure with which to 

distinguish between some interesting problems within P, and present interesting issues in their 

own right. At first glance logarithmic space is a problematic notion at best. An input of length n 

takes n squares by itself, so how can a computation on such an input take only log n space? The 

answer lies in changing our computation model slightly to only count the space taken by the 

computation and not the space of the input. Formally, this is done by considering an “off-line 

Turing machine.” This is a (deterministic or nondeterministic) Turing machine whose input is 

written on a special read-only input tape. Computation is carried out on read-write work tapes 

which are initially blank. The space complexity of the computation is then taken to be the 
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amount of space used on the work tapes. So in particular this space can be less than n, the 

length of the input to the computation. We define logspace, L, to be the class of languages 

decided by deterministic Turing machines which use at most O(logn) tape squares. Similarly, NL 

is defined using nondeterministic Turing machines with the same space bound. It is 

straightforward to check that L ⊆ NL ⊆ P, and these three classes are thought to be distinct. 

There are a number of nontrivial problems solvable in L (for example see [LZ77]) as well as 

problems known to be in NL which are not believed to be in L (for example see [Sav73, Jon75] ). 

Numerous problems in P are thought to lie outside of L or NL. For example, one such problem is 

the circuit value problem, the problem of determining the value of a Boolean circuit, given 

inputs to the circuit. The circuit value problem is one of many problems in P which is known to 

be P complete. These are problems in P which are proved to be complete with respect to log-

space bounded reductions, reductions defined analogously to polynomial time bounded 

reduction in the previous section. Proving a P-complete problem is in L would imply that L = P. 

(3.5) Oracles  

Oracle results play a unique role in complexity theory. They are meta-mathematical results 

delineating the limitations of proof techniques and indicating what results might be possible to 

achieve and which are likely beyond our current reach. Oracle results concern relativized 

computations. We say that a computation is carried out “relative to an oracle set O” if the 

computation has access to the answers to membership queries of O. That is, the computation 

can query the oracle O about whether or not a string x is in O. The computation obtains the 

answer (in one step) and proceeds with the computation, which may depend on the answer to 

the oracle query. The first, and still most fundamental oracle results in complexity were carried 

out by Baker, Gill and Solovay [BGS75]. They proved that there is an oracle reactive to which 

P=NP and another oracle relative to which P and NP differ. What do these results say about the 

P vs NP question? They say little about the actual answer to this question. The existence of an 

oracle making a statement S true is simply a kind of consistency result about S. It says that the 

statement is true in one particular model or “world” (that is, the oracle set itself). As such, we 

can conclude that a proof of the negation of S will not itself relativize to any oracle. Thus, as 

many proof methods do relativize to every oracle, an oracle result provides a limitation to the 

possible methods used to prove S and hence are evidence that the result is, in this sense, hard. 

Oracle results have been most useful in delineating theorems which are difficult to prove (i.e., 

those which do no relativize), from those which might more likely be settled by well-

understood, relativizing proof techniques. In particular, the Baker, Gill and Solovay results 

concerning P and NP question indicate that a proof will be difficult to come by, as has indeed 

been the case. Since 1978 numerous other oracle results have been proved. Techniques used to 

achieve these results have become quite sophisticated and strong. For instance, Fenner, Fort 

now and Kurtz[FFK94] gave a relativized world where the isomorphism conjecture holds where 

Kurtz, Mahaney and Royer [KMR89] had showed that it fails relative to most oracles. They were 

the culmination of a long series of partial results addressing this question. There are a few 
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results in complexity that do not relativize, mostly relating to interactive proof systems (see 

Section 6.1) but these tend to be the exception and not the rule. 

(4) DESCRIPTIVE COMPLEXITY: 

Many of the fundamental concepts and methods of complexity theory have their genesis in 

mathematical logic, and in computability theory in particular. This includes the ideas of 

reductions, complete problems, hierarchies and logical definability. It is a well-understood 

principle of mathematical logic that the more complex a problem’s logical definition (for 

example, in terms of quantifier alternation) the more difficult its solvability. Descriptive 

complexity aims to measure the computational complexity of a problem in terms of the 

complexity of the logical language needed to define it. As is often the case in complexity theory, 

the issues here become more subtle and the measure of the logical complexity of a problem 

more intricate than in computability theory. Descriptive complexity has its beginnings in the 

research of Jones, Selman, Fagin [JS74, Fag73, Fag74] and others in the early 1970’s. More 

recently descriptive complexity has had significant applications to database theory and to 

computer-aided verification. The ground breaking theorem of this area is due to Fagin [Fag73]. 

It provided the first major impetus for the study of descriptive complexity. Fagin’s Theorem 

gives a logical characterization of the class NP. It states that NP is exactly the class of problems 

definable by existential second order Boolean formulas. This result, and others that follow, 

show that natural complexity classes have an intrinsic logical complexity. To get a feel for this 

important idea, consider the NP-complete problem of 3 colorability of a graph. Fagin’s theorem 

says there is a second order existential formula which holds for exactly those graphs which are 

3-colorable. This formula can be written as (∃A,B,C)(∀v)[(A(v)∨B(v)∨ C(v))∧(∀w)(E(v,w) → 

¬(A(v)∧A(w))∧¬(B(v)∧B(w))∧¬(C(v)∧C(w)))]. Intuitively this formula states that every vertex is 

colored by one of three colors A, B, or C and no two adjacent vertices have the same color. A 

graph, considered as a finite model, satisfies this formula if and only if it is 3-colorable. Fagin’s 

theorem was the first in a long line of results which prove that complexity classes can be given 

logical characterizations, often very simply and elegantly. Notable among these is the theorem 

of Immerman and Vardi [Imm82, Var82] which captures the complexity of polynomial time. 

Their theorem states that the class of problems definable in first order logic with the addition of 

the least fixed point operator is exactly the complexity class P. Logspace can be characterized 

along these same lines, but using the transitive closure (TC) operator rather than least fixed 

point. That is, nondeterministic logspace is the class of problems definable in first order logic 

with the addition of TC (see Immerman [Imm88]). And if one replaces first order logic with TC 

with second order logic with TC the result is PSPACE (see Immerman [Imm83]). Other, 

analogous results in this field go on to characterize various circuit and parallel complexity 

classes, the polynomial time hierarchy, and other space classes, and even yield results 

concerning counting classes. The intuition provided by looking at complexity theory in this way 

has proved insightful and powerful. In fact, one proof of the famous Immerman-Szelepcsenyi 

Theorem [Imm88, Sze88] (that by Immerman) came from these logical considerations. This 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-36 237 



 

 

   

  

 

theorem say that any nondeterministic space class which contains logspace is closed under 

complement. An immediate consequence is that the context sensitive languages are closed 

under complement, answering a question which had been open for about 25 years. To this 

point we have considered several of the most fully developed and fundamental areas of 

complexity theory. We now survey a few of the more central topics in the field dealing with 

other models of computation and their complexity theory. These include circuit complexity, 

communication complexity and proof complexity. 
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