

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Robotics And Artificial Intelligence

Sahil Munjal
Dept. of Computer Science and Engineering

Dronacharya College of Engineering, Gurgaon

E-mail: sahil5141.munjal@gmail.com

Sachin Malik

Dept. of Computer Science and Engineering

Dronacharya College of Engineering, Gurgaon

E-mail: maliksachin464@gmail.com

Sahil Bhardwaj
Dept. of Computer Science and Engineering

Dronacharya College of Engineering, Gurgaon

E-mail: sahilsep6@gmail.com

ABSTRACT

Robotics and Artificial Intelligence stand as two disciplines related to computer science. Robotics aims at building robots

which autonomously perceive, (eventually) reason and act (e.g., communicate) in real physical environments. A.I. aims at

representing knowledge and reasoning on it, in a way as close as possible to human reasoning. Without raising arbitrary

barriers, these two disciplines are different: general conferences in the A.I. field include IJCAI, ECAI, AAAI, RFIA and

many specialized conferences ; general conferences in the Robotics field include ICRA, IROS and many other specialized

conferences, e.g., on control theory.

 However, many Robotics-claimed work include A.I. algorithms: The A* algorithm and its variants are used for path

planning, i.e., finding a continuous path from location A to location B on a map while avoiding obstacles recorded on the

map; Evolutionary computing is used to optimize online merging of maps represented as occupancy grids, or in micro-

robotics; many examples can be drawn along similar lines.

 In this paper, we sketch the main goals of A.I. and of Robotics, record their differences and highlight the convergence

points, aiming at a better communication between the two communities.

INTRODUCTION
Artificial Intelligence and Robotics, as two main domains related to Computer Science, both have a long history since their

introduction, which can be traced back over the centuries for their initial ideas. However it still is difficult to define these

domains, in order for each one to cover the vast variety of work performed under each banner. Let us attempt at using one

definition of A.I.: is relevant to Artificial Intelligence any computer program which would be said “intelligent” if its activity

would be so considered when performed by a human. Such a definition leads to the imitation game, or the Turing test, in

which a tester has to determine to whom it communicates with through a computer: a computer program or a human.

 On the other hand, let us attempt at defining Robotics as the design of mechanical devices known as robots, a word

invented by a Czech writer in the early 20th century. Given these two definitions, for A.I. on one side and for Robotics on

the other side, there seems to be a wide gap between the two domains, except if we want to talk about intelligent robots, the

notion of intelligence being added to the one of robot.

 But the gap between the two domains is not so wide. For example, a widely adopted textbook on A.I. includes two

chapters on robotics (written by Sebastian Thrun): chapter 24 “Perception” and 25 “Robotics”. The overall impression

produced by this chapter organization is that robotics is a sub domain of A.I., i.e., a field on which A.I. can be applied. The

result seems to be that robotics looks like an application domain of A.I. “Let’s give a body to our A.I. algorithms”. On the

other hand, an introductory book on robotics considers A.I. as a software module giving intelligence to a robot. “Let’s plug

a brain into that robot”.

 In this paper, we argue that the point where the two communities seem to meet is the notion of intelligent robot, i.e., a

robot on one side which would exhibit an intelligent behavior on the other side. More precisely, we advocate that this notion

unfolds into the notion of software architecture of a robotic agent, i.e., the way the algorithms running on a robotic agent are

organized, in order for the mechanical and electronic device to be able to face a real dynamic environment.

FROM A.I. TO ROBOTICS, AND BACK
In this section, we attempt at drawing how the A.I. community perceives the robotics one on one side, and then how the

robotics community perceives the A.I. one on the other side.

A. Robotics considered from A.I.

In the early 70s, Robotics and A.I. were not as separated as now. For example, the robot SHAKEY from the SRI had its

behavior driven by the first A.I. task planner, named STRIPS. This was the first time a robotic agent was able to exhibit

a coherent behavior while actually computing first the sequence of actions it would take later. In other words, the

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-25 155

mailto:sahil5141.munjal@gmail.com
mailto:maliksachin464@gmail.com
mailto:sahilsep6@gmail.com

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

robot did not know at first what to do: It computed what to do (with the STRIPS task planner) before actually doing it

(robotics part). One side effect of this project was the start of the A.I. planning community, resulting 40 years later in the

ICAPS conferences series.

 As another example, S. Koenig et al. propose an improvement of the A* algorithm, called lifelong planning A* , which is

tested in the case of path planning robotic problem. This is another example of A.I. work resulting in

robotic applications.

B. A.I. considered from Robotics

The main way A.I. is considered from the domain of Robotics seems to be a library of algorithms. The most obvious A.I.

algorithm imported into the robotics community seems to be A*, which can be used for path planning, i.e., finding a

sequence of locations which leads a start location to a target location while avoiding known obstacles This

model relies on discretizing the environment, considering some cells as successors (in the successor function of the A*

algorithm) of the current cell and identifying the IsGoalReached? boolean function of A* as a successor cell

being the goal location. (See the previous paragraph for improvements.)

 Another algorithmic import from A.I. towards robotics is genetic algorithms. For example, Li and Nashashibi use

genetic algorithms for map merging : given one map of some environment, how to find a rotation/translation of a second

map which maximizes the number of pixels that match among the two maps? Considering this problem as an optimization

problem would lead to a combinatorial explosion, and such a stochastic method can be applied successfully to merging maps

coming from two different robotic vehicles.

 Other algorithmic imports from A.I. towards robotics include fuzzy logic. For example, J. Perez et al. use fuzzy logic

to define a small set of fuzzy rules determining the behavior of a driverless vehicle, i.e., for the control part of a robotic

vehicle . Given the robotic software architecture of robotic driverless vehicle (see next section), the behaviour of a driverless

vehicle can thus be defined by a small set of (fuzzy) rules.

AGENT ARCHITECTURES

A notion relating A.I. and Robotics seems to be the one of robotic agent architecture, considered as the way to organize

algorithms inside a robotic agent, which has to evolve in a physical real dynamic environment, thus constituting an

intelligent robot.

 A first robotic agent architecture is the Sense-Plan-Act loop in which the agent sequentially perceives its environment,

builds an action plan through task planning, and executes it. The main problem with this architecture is that task planning is

an NP complete problem, entailing that the task planning component might eventually take a very long time to produce a

plan of tasks, for the agent to then execute it and eventually exhibit a motion. As a result, the overall agent might get stuck in

the environment, while the environment might change and require attention --- in the worst case, the produced action plan

might be obsolete once delivered because of environmental changes.

 A radically different view is proposed by R. Brooks with the subsumption architecture In that approach, the robotic

agent is composed of a finite state automaton, the parameters of which are set by an upper finite state automaton, the

parameters of which … until the slowest (and upmost) finite state automaton is reached. This architecture incorporates no

deliberation at all, since no symbol is allowed . The question then becomes: is such an agent intelligent?

 As opposed to the subsumption architecture, and as an improvement of the Sense-Plan-Act architecture, Hayes-Roth et

al. propose a 2-layer architecture of a robotic agent . In that architecture, there are 2 levels: one (lowest) for sensori-motor

control loops (encoding “behaviors” in a “physical” layer), activating actual motion of the agent, and one (upmost) for

recognizing a situation given perception, task planning, and plan monitoring (executing each action of the plan in sequence),

in a symbolic “cognitive” layer. A major point is that these two levels run in parallel, therefore the agent can adopt a specific

behavior even if A.I. task planning has not produced a task plan yet. Therefore, such a robotic agent is not stuck deliberating,

as in the Sense-Plan-Act architecture, and still incorporated A.I. task planning, as opposed to the

subsumption architecture.

Another robotic agent architecture proposes the concept of deadline as first class notion, in a 3-layer architecture. In that

approach, there again is a layer for deliberation (called deliberator) and a layer for physical behaviors (called controller). But

in between lays another layer (called Sequencor) which activates components of the 2 previous layers, while allotting them a

deadline to finish. As a result, the long computing of the deliberator can be avoided in a crude way.

 In line with the previous 3-level architecture and retaining concepts of the previous 2-layer architecture is the LAA

architecture . This approach is composed of a cognitive layer (called Deliberator), which includes an A.I. task planner

(IxTeT) and a procedural executive to activated produced plans (PRS), and a lowest layer (called Executive), which includes

the available sensori-motor control loops of the robotic agent. In between lays a functional level, which choses a sensori

motor control loop given the specification of the action to undertake, produced by the deliberative layer.

An improvement of the previous 2-level architecture, is the 2++ level architecture . This architecture is close in spirit to the

2-level architecture of Hayes-Roth et al. , but includes an additional link between the Perception reactive component and the

Action reactive component, for transmitting contingent plans in case of emergency. In case of emergency, a predefined

contingent plan (“panic plan”) is adopted by the agent, while the cognitive level looks for a rational action plan to take the

emergency event into account. Interesting behaviors of groups have been obtained for simulated aircraft in an adverse

environment .

 A final robotic agent architecture has been proposed for intelligent transportation systems, such as automated cars in

daily traffic environments . This approach essentially s a Sense-Plan-Act architecture where task planning has been replaced

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-25 156

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

by path planning: the vehicle knows since the beginning its plan of action, but dynamically computes its future trajectory on

a potentially crowded road, for later computing the detailed voltage to give to electrical effectors (e.g., engine). This

architecture is sucessfully used for driverless automated vehicles such as CyberCars .

DISCUSSION
A main characteristics of robotic models is that they must be capable of representing errors. For example, SLAM

(Simultaneous Localization And Mapping) aims at both knowing where the robotic agent is on its map (localization) and

building its map (mapping). Given its sensors, which mainly return a distance to potential obstacles (e.g., a laser), the

problem is that if the agent knows where it is on its map, it can infer where the perceived obstacle is (by adding a vector to

its own position); On the opposite, if the robotic agent knows where the obstacle is on its map, it can infer where it is on its

own map (by subtracting a vector to the obstacle’s position). The problem of SLAM is that none of the two positions are

known, therefore a SLAM algorithm accumulates measures in order to build an estimate of the two positions. Such a

reasoning based on error shrink uses probabilities.

 On the other hand, many A.I. techniques use discreteness: search algorithms, constraint programming, ontologies, to

cite a few. We believe that the main difference between Robotics and A.I. lay in the opposition between continuity

(probabilities) and discreteness (integers). For example, the previous section shows examples of discretely encapsulating

continuous algorithms: a continuous sensori-motor control loop (i.e., a behaviour of the physical layer of several of the

previous architectures) is encapsulated into a discrete model (the architecture itself). Similar opposition between continuous

and discrete models may be found in other domains of computer science. For example, in Operational Research, the simplex

algorithm (i.e., what is the value of real variables which minimize a linear cost function, given constraints on these variables

represented as linear inequalities?) is based on continuous (real) values, i.e., the domain of a variable is the set of real

numbers R. However when we want to obtain discrete values of variables for solving the same problem, variables then

belong to the set of integers N, and no longer to the set of real numbers R. As a result, this same problem, but with the

variables domain changed, becomes NP-complete, and one possible approach is the branch & bound algorithm, since the

simplex algorithm alone does not guarantee that the values of the variables will be integers (discrete). The overall behaviour

of the branch & bound algorithm, encapsulating calls to the (continuous) simplex algorithm at each node of the developed

tree (relaxed solution), is closed in spirit to the notion of software architectures of a robotic agent (see previous section): both

notions are discrete reasoning on continuous algorithms (sensori-motor loops controlled by task planning, for software

architectures; simplex algorithm controlled by a tree search, for a branch & bound algorithm).

 Now the next theoretical step lays in the opposition between the set of integers N (discreteness) and the set of real

numbers R (continuity). N is included in R, and there is no bijection mapping N to R (R cannot be enumerated). But is that

the end of the story?

CONCLUSION
In this paper, we discuss the relationship between Robotics and Artificial Intelligence. Although more coupled 40 years ago,

the two disciplines seem to have followed different paths, leading to two different communities with specific academic

forums for each. A.I. seems to consider robotics as an application domain, and Robotics seems to import A.I. algorithms

when needed, as in a library. We advocate that the goal of building an intelligent robot seems to unify the two domains.

Towards this we present a brief survey of the notion of software architectures of robotic agents. Furthermore, we present

arguments suggesting that the difference between the two domains might lay in the difference between discreteness and

continuity, which fall on hard theoretical problems.

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, F. Ingrand. An Architecture for Autonomy. In International Journal of

Robotics Research (Special Issue on ``Integrated Architectures for Robot Control and Programming''), Vol 17, N° 4, Apri1

1998. LAAS Report N°97352.

[2] J. Baltié, E. Bensana, P. Fabiani, J. – L. Farges, S. Millet, P. Morignot, B. Patin, G. Petitjean, G. Pitois, J. – C. Poncet.

MultiVehicle

Missions: Architecture and Algorithms for Distributed On

Line Planning. In Dimitri Vrakas and Ioannis Vlahavas (eds.), Artificial Intelligence for Advanced Problem Solving

Techniques, Information Science Reference. December 2007.

[3] Brooks, R. A. A Robust Layered Control System for a Mobile Robot. In IEEE Journal of Robotics and Automation, Vol.

2, No. 1, March 1986, pp. 14–23.

[4] R. Brooks. Intelligence without reason. Proceedings of 12th Int. Joint Conf. on Artificial Intelligence (IJCAI’91),

Sydney, Australia, August 1991, pp. 569–595.

[5] R. Fikes, N. Nilsson. STRIPS, a new Approach to the Application of Theorem Proving. Artificial Intelligence, vol.

2(1971), pp. 189-208.

[6] Gat, E. Three-layer architectures. In D. Kortenkamp et al. Eds. A.I. and mobile robots. AAAI Press, 1998.

[7] R. Gélin. Le robot: ami ou ennemi ? Le Pommier, Paris. 2006. (in French)

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-25 157

