

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

Agile Software Development

Simran Bhatti, Vandana Tayal, Pooja Gulia

Student, Computer Science, Maharishi Dayanand University

Gurgaon, Haryana, India

sim.bhatti4@gmail.com

Student, Computer Science, Maharishi Dayanand University

Gurgaon, Haryana, India

vandana.tayal94@gmail.com

Student, Computer Science, Maharishi Dayanand University

Gurgaon, Haryana, India

pg.gulia2@gmail.com

Abstract

In software application development, agile software development (ASD) is a methodology for the creative process

that predicts the need for flexibility and applies a level of soberness into the delivery of the finished product. It is

about how to work together to achieve a common goal. This paper focuses on how technology team, work together

to plan, build and deliver software. It is a group of software development methods in which requirements and

solutions grow through fraternization between self-organizing, cross-functional teams.

Keywords: Application development, software product, agile manifesto, methodology.

I. BRIEF HISTORY

Incremental software development methods trace back to 1957.[3] In 1974, E. A. Edmonds wrote a paper that

introduced an adaptive software development process.[4][5]Concurrently and independently, the same methods

were developed and deployed by the New York Telephone Company's Systems Development Center under the

direction of Dan Gielan.

Later, Ken Schwaber with others founded the Scrum Alliance and created the Certified Scrum Master

programs and its derivatives. Schwaber left the Scrum Alliance in the fall of 2009, and founded Scrum.org.

In 2005, a group headed by Alistair Cockburn and Jim Highsmith wrote an addendum of project management

principles, the Declaration of Interdependence to guide software project management according to agile

software development methods.

In 2009, a movement spearheaded by Robert C Martin wrote an extension of software development principles,

the Software Craftsmanship Manifesto, to guide agile software development according to professional conduct

and mastery.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-20 108

mailto:sim.bhatti4@gmail.com
mailto:vandana.tayal94@gmail.com
mailto:pg.gulia2@gmail.com
http://en.wikipedia.org/wiki/Agile_software_development#cite_note-craig2003-3
http://en.wikipedia.org/wiki/Agile_software_development#cite_note-edmonds1974-4
http://en.wikipedia.org/wiki/Agile_software_development#cite_note-edmonds1974-4

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

In 2011 the original Agile Alliance created the Guide to Agile Practices, an evolving open-source compendium

of the working definitions of agile practices, terms, and elements, along with interpretations and experience

guidelines from the world-wide community of agile practitioners.

The PRINCE2 project management methodology, used on many British Government projects, is being

enhanced to manage projects that use Agile techniques.

II. THE AGILE MANIFESTO

In February 2001, 17 software developers met at the Snowbird resort in Utah to discuss some lightweight

software development methods. They published the Manifesto for Agile Software Development.

The manifesto comprises of some concepts which are described as below:

 Individuals and interactions: self-organization and motivation are important, as are interactions like co-

location and pair programming.

 Working software: working software is more useful and welcome than just presenting documents to

clients in meetings.

 Customer collaboration: requirements cannot be fully collected at the beginning of the software

development cycle, therefore continuous customer or stakeholder involvement is very important.

 Responding to change: agile methods are focused on quick responses to change and continuous

development.

III. THE AGILE PRINCIPLES

The Agile Manifesto is based on 12 principles:

1. Customer satisfaction by rapid delivery of useful software.

2. Welcome changing requirements, even late in development.

3. Working software is delivered frequently (weeks rather than months).

4. Close, daily cooperation between business people and developers.

5. Projects are built around motivated individuals, who should be trusted.

6. Face-to-face conversation is the best form of communication (co-location).

7. Working software is the principal measure of progress.

8. Sustainable development, able to maintain a constant pace.

9. Continuous attention to technical excellence and good design.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. Self-organizing teams.

12. Regular adaptation to changing circumstance.

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-20 109

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Why Agile?

Agile development provides opportunities to assess the direction throughout the development lifecycle.

This is achieved through regular cadences of work, known as Sprints or iterations, at the end of which

teams must present a potentially shippable product increment. By focusing on the repetition of abbreviated

work cycles as well as the functional product they yield, agile methodology is described as “iterative” and

“incremental.” In waterfall, development teams only have one chance to get each aspect of a project right.

In an agile paradigm, every aspect of development — requirements, design, etc. — is continually revisited.

When a team stops and re-evaluates the direction of a project every two weeks, there’s time to steer it in

another direction. This “inspect-and-adapt” approach to development reduces development costs and time

to market. Because teams can develop software at the same time they’re gathering requirements, “analysis

paralysis” is less likely to impede a team from making progress. And because a team’s work cycle is

limited to two weeks, stakeholders have recurring opportunities to calibrate releases for success in the real

world. Agile development helps companies build the right product. Agile development preserves a

product’s critical market relevance and ensures a team’s work doesn’t wind up on a shelf, never released.

IV. AGILE DEVELOPMENT - DIAGRAMATIC REPRESENTATION

 Agile Phases :

The 5 phases we will discuss here are feasibility, planning, development, adapting, and deployment:

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-20 110

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

1. The feasibility phase is used to determine if an idea has enough merit to carry forward planning. An

individual or small group will inspect the idea for customer value, company value, and risk.

2. If an idea is viable it will proceed to planning. The project team will be assembled at this time and the team

will work together to identify features. Features will be examined for value and risk and eventually

estimated so they can be assigned to an iteration plan.

3. Development iterations convert the iteration plan into working code. Features are built, tested, and

demonstrated to the customer and stakeholders at the end of each and every iteration.

4. The team adapts between development iterations. Customer feedback is used to adjust the plan for the

forthcoming iteration.

5. When all iterations are complete the team deploys the working code into a production environment.

V. SOME AGILE PITFALLS

Organizations and teams implementing agile development often face difficulties transitioning from more

traditional methods such as waterfall development, such as teams having an agile process forced on

them.These are often termed agile anti-patterns or more commonly agile smells. Below are some common

examples:

 Lack of overall project design

 Adding stories to a sprint in progress

 Lack of sponsor support

 Insufficient training

 Product owner role is not properly filled

 Teams are not focused

 Excessive preparation/planning

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-20 111

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING

 Problem-solving in the daily scrum

 Assigning Tasks

 Scrum master as a contributor

 Lacking test automation

 Allowing technical debt to build up

 Attempting to take on too much in a sprint

 Fixed time, resources, scope and quality

VI. REFERENCES

 http://agilemethodology.org/

 http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-

how-t

 http://en.wikipedia.org/wiki/Agile_software_development

 www.agile-developmenttools.com

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-4 | April,2015 | Paper-20 112

http://agilemethodology.org/
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-
http://www.codeproject.com/Articles/604417/Agile-software-development-methodologies-and-how-
http://en.wikipedia.org/wiki/Agile_software_development
http://www.agile-developmenttools.com/

