

Analysis and Diminution of NoSQL Injection attacks

Pritesh Patil1, Ashwini Gaikwad2, Rachana Badekar3, Ankita Urade4, Rutuja Hirve5

1Prof Pritesh Patil AISSMS Institute of Information Technology

 2Ashwini Gaikwad AISSMS Institute of Information Technology
3Rachana Badekar AISSMS Institute of Information Technology

4Ankita Urade AISSMS Institute of Information Technology
5Rutuja Hirve AISSMS Institute of Information Technology

Abstract

Scalability and ease of use has been one of the major reasons behind the popularity of

NoSQL storage systems. Flexibility and scalability of NoSQL databases are major cause for

adoption and popularity. Unfortunately, they lack the security measures and awareness that

are required for data protection. The global exposure of these applications makes them prone

to the attacks because of presence of vulnerabilities. These security vulnerabilities continue

to infect the web applications through injection attacks thus enabling the attackers to attack

on the database by injecting malicious code into the statements passed to the database

because the new data models and query formats of NoSQL data which in turn makes the

attack divergent.

Keywords- NoSQL , SQL Injection, Mitigation, Security

1. INTRODUCTION

 Database security has been one of the most critical aspects of application security. Lack of

suitable security systems make it convenient for the attackers to get control over critical data

by accessing the database. Recently, the NoSQL databases have become more and more

popular because NoSQL databases provide looser consistency restrictions than traditional

SQL databases do. NoSQL databases often offer performance and scaling benefits by

requiring fewer relational constraints and consistency checks. This enables att ackers to do

almost anything with the data, including accessing unauthorized data and altering, deleting,

and inserting data. Example of such attack is SQL injection is a code injection technique that

is used to attack data driven applications, in which malicious SQL statements are inserted

into an entry field for execution. The malicious user can use SQL commands insert to the

Web form submission or enter the domain name to achieve the purpose of tricking the server

to execute malicious SQL commands. This gives the attacker freedom to perform any

unwanted operations like accessing unauthorized data, deleting, altering or inserting data.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 1

 NoSQL (not only SQL) is a trending term in modern data stores; it refers to nonrelational

databases that rely on diff erent storage mechanisms such as document store, key-value store,

and graph. NoSQL is a wide class of database management systems that are not traditional

relational database management systems. They do not use SQL language as the primary

query language, nor do they typically require fixed table schemas. NoSQL database system

allows a user to change data attributes at any time, and data can be added anywhere. Various

storage mechanisms such as document store, key-value store, and graph are used by NoSQL

databases. The wide adoption of these databases has been facilitated by the new

requirements of modern large-scale applications, such as Facebook, Amazon, and Twitter,

which need to distribute data across a huge number of servers. One of the biggest advantages

is the ability to change attributes because of the weakening of structural, so modification

process is very convenient.

 Indeed, the popularity of NoSQL databases has grown consistently over the past several

years due to it's key factors. Among the 10 most popular databases MongoDB is fourth

ranking database. In this article, we provide analysis of NoSQL threats and their mitigation

mechanisms.

2. NoSQL FRAGILITY

 NoSQL is vulnerable the same way SQL databases are vulnerable. Some attacks which are

relevant in SQL databases become obsolete in NoSQL databases. Like almost every new

technology, NoSQL databases lacked security when they first emerged. NoSQL databases are

not fully secured in all aspects. NoSQL databases afflicted by deficiency of encryption,

appropriate authentication, role management. The poor programming/coding practice leads to

vulnerabilities. For example, vulnerability like loopholes attract the attacker to customize

attacks. The attacker can plan a particular attack according to the specific vulnerability

present in the application. NoSQL databases are supported by web 2.0 companies which are

Amazon and Google Only.

3. NoSQL INJECTION BLITZ

 NoSQL injections enable an attacker to inject code into the query that would be

executed by the database. These flaws are introduced when software developers create

dynamic database queries that include user supplied input. These attacks are broadly

categorized into five types:-

3.1 Union Query

An attacker injects an UNION SELECT to trick the application into returning data from a

table different from the one that was intended. Here is a common form using a single

quote for this attack:

normal SQL statement + "semi-colon" + UNION SELECT <rest of injected query>.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 2

3.2 Tautologies

 An attacker injects a query that always evaluates to true for entries in the database to bypass

authentication, identify injectable parameters, or extract data. For example:

Username known

Input (username): jdoe' or '1'='1--

Sql: SELECT * FROM students WHERE username = 'jdoe' or '1'='1' -- AND password =

Result: All students are retrieved.

Both username and password not known

Input (username): ' or '' = '

Input (password): ' or '' = '

Sql: select * from students where username = '' or '' = '' and password = '' or '' = ''

Result: All students are retrieved.

3.3 PiggyBacked Queries

 An attacker injects additional queries into the original query to extract data, add or modify

data, perform denial of service, or execute remote commands. In this scenario, the attacker

does not intend to modify the original intended query but to include new queries that piggy-

backon the original query. As a result, the DBMS receives multiple SQL queries. The first is

the normal query which is executed normally, while the subsequent ones are executed to

satisfy the attack. Here is a common form using a query delimiter (;) for this attack:

normal SQL statement + ";" + INSERT (or UPDATE, DELETE, DROP) <rest of injected

query>

3.4 Stored Procedures:

When a normal SQL statement (i.e., SELECT) is created as a stored procedure, an attacker

can inject another stored procedure as a replacement for a normal stored procedure to

performing privilege escalation, create denial of service, or execute remote commands. Here

is a common form using a query delimiter (;) and the "SHUTDOWN" store procedure for this

attack:

normal SQL statement + "; SHUTDOWN; " <rest of injected query>

3.5 Javascript injection

Javascript injection allows you to change websites behavior without refreshing or leaving it.

It provides on spot interaction with the source code of website from browser window.

Javascript script might come really handy when you are hacking basic websites.

Javascript injection allows you to alter the form values before sending it to server.

In Javascript injection, javascript codes are injected from address bar of the browser window.

In this tutorial we’ll go through the basics of javascript injection, if you are javascript expert

then it might be below your knowledge. However freshers might find it interesting and

informative. To command any javascript code to your browser you must inform it that its

javascript. It can be done by adding “Javascript:”(without quotes) just before your code.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 3

Below is the sample code to input in your browser.

Javascript: alert("Welcome to yahoo.com");

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 4

4. SYSTEM ARCHITECTURE

5. MITIGATION

An SQL injection is a well known attack and easily prevented by simple measures. Web sites

that interface with databases are particularly vulnerable to SQL injection because they often

rely on dynamic SQL, so Databases are the integral part of web application. Mitigating

security risks in NoSQL deployments is major part of different attacks we present in this

paper. Unfortunately, code analysis of the application layer alone is not adequate to ensure

that all risks are mitigated.

Let us scrutinize a few recommendations for each of the threats:

 Prepared statements with parameterized queries: Prepared statements should be used

instead of building dynamic queries using string concatenation.

 Strong JSON structure queries

 Input Validation: Validate inputs to detect malicious values. For NoSQL databases,

also validate input types against expected types

 Principle of least privilege: To minimize the potential damage of a successful

injection attack, do not assign DBA or admin type access rights to your application

accounts. Similarly minimize the privileges of the operating system account that

the database process runs under.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 5

The two phases of mitigation presented by us are:

5.1 Development And Testing

In this, we consider the threats involved in the software development lifecycle of our online

shopping website. The various attacked modules will be mitigated by using the following

techniques

 Looking closely through the design aspects such as what need to be protected and

how will this occur.

 Using best practices of code like strong JSON structure, proper validation, prepared

statement etc.

 Spreading awareness among the developers so that they are less likely to portray

weaknesses in their code

 Running dynamic and static security testing so as to detect the vulnerabilities in code

for injection attacks. We will run various test cases to check the performance of the

tester.

5.2 Monitoring And Attack Detection

 A look at the importance of adopting intrusion detection systems will be shown.

6. CONCLUSION

We examined various threats that are vulnerable to the database. Different ways to tackle

those attacks are discussed. In order to protect the database from these attacks some

mitigation techniques are proposed which are Dynamic Application Security Testing

(DAST). We will be using prepared statement and validation as a solution for mitigation of

NoSQL injection.

7. REFERENCES

[1] Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov “Analysis and Mitigation

of NoSQL Injections”

[2] Halfond, W. G., Viegas, J., and Orso, A. A Classification of SQL-Injection Attacks

and Countermeasures. In SSSE (2006).

[3] D. Litchfield. Web Application Disassembly with ODBC Error Messages. Technical

document, @Stake, Inc., 2002.

[4] A Lane, “No SQL and No Security,” blog, 9 Aug. 2011; w

ww.securosis.com/blog/nosql-and-no-security.4.

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 6

http://www.securosis.com/blog/nosql-and-no-security.%204
http://www.securosis.com/blog/nosql-and-no-security.%204

[5] Damon Poeter. 'Close-Knit' Russian Hacker Gang Hoards 1.2 Billion ID Creds, PC

Magazine, August 5, 2014

[6] I.Novikov, “The New Page of Injections Book: Memcached Injections,” Proc. Black

Hat USA, 2014; www.blackhat.com /docs/us-14/materials/us-14-Novikov-The-New-

Page -Of-Injections-Book-Memcached-Injections-WP.pdf.

[7] J. Williams, “7 Advantages of Interactive Application Security Testing (IAST) over

Static (SAST) and Dynamic (DAST) Testing,” blog, 30 June 2015; https://www

.contrastsecurity.com/security-influencers/9-reasons -why-interactive-tools-are-better-

than-static-or-dynamic -tools-regarding-application-security.

[8] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo: Amazon’s Highly Available

Key-Value Store,” in Proceedings of the 21st ACM Symposium on Operating

Systems Principles, Stevenson, WA, Oct. 2007.

[9] Least Privilege mitigation to SQL injection

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Least_Pri

vilege

[10] MongoDB web site www.mongodb.org

[11] http://cassandra.apache.org

[12] Chandershekhar Sharma, Dr. S.C.Jain “Analysis and Classification of SQL

Injection Vulnerabilities and Attacks on Web Applications”

[13] E. Sahafizadeh and M.A. Nematbakhsh. “A Survey on Security Issues in Big

Data and NoSQL,” Int’l J. Advances in Computer Science, vol. 4, no. 4, 2015, pp.

2322–5157.

[14] 9 Advantages of Interactive Application Security Testing (IAST) over Static

(SAST) and Dynamic (DAST) Testing http://www1.contrastsecurity.com/blog/9-

reasons-why-interactive-toolsare-better-than-static-or-dynamic-tools-regarding-

application-security

 IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-3 | Issue-3 | March,2017 | Paper-1 7

http://www.pcmag.com/article2/0,2817,2462057,00.asp
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Least_Privilege
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet#Least_Privilege
http://www.mongodb.org/
http://cassandra.apache.org/

