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Abstract. A systems view of the world is currently the dominant paradigm in 

modern human practice. And in all practical cases the main concern is to 

overcome difficulties that stem from complexity of a system under consideration. 

But the “complexities” have various origins of a different nature and thus require 

different approaches to tackling each of them. The paper discusses these 

differences. 
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ON VARIOUS MEANINGS OF THE TERM “COMPLEXITY” 

          

          Any word in colloquial language has several (sometimes many) different 

meanings. This enables us to speak with finite phrases about infinite variety of the 

world. But when our practice requires more precise speaking of a specific part of 

the world, we use only those meanings of a word that have the closest relation to 

the theme of concern. It is in this way that the ―professional‖ languages emerge. 

Look, for instance, at various meanings of the word ―field‖ in agriculture, physics, 

surgery, geology, military, sports, and sociology.                                                                                                                                                                                                                                                                                                                                  

         The terms complex and complexity are no exceptions. Their variety of 

meanings in professional languages is now the hot theme in systems thinking 

research and discussions; a survey of them that is rich in content is given in Mohr 

and Gibbs (2014), Cabrera (2015), Worsley (2016).                            

         A system is usually called complex when one meets a difficulty in dealing 

with the system, either when studying and explaining it (investigation, cognition), 

or when purposefully changing and controlling it (governance). However, since the 

difficulties may have various causes, the different types of complexity must be 

distinguished. It is important to differentiate between them explicitly and precisely, 

because systems of different complexity types require very different approaches to 

tackling them. For this reason, systems with different origins of complexity even 

deserve to be named differently, not just called complex. An attempt to survey 

certain classifications of types of complexity and corresponding methods of 

treating them is presented in the following.  

 

1. A CLASSIFICATION ACCORDING TO DEGREES OF  

NATURAL COMPLEXITY IN THE BEHAVIOR OF A SYSTEM 

  

     IJRDO - Journal of Computer Science and Engineering                           ISSN: 2456-1843

Volume-3 | Issue-1 | January,2017 | Paper-2 6                   



       Studies of the dynamic behavior of systems described by fully deterministic 

differential equations of the second order partial derivatives have revealed a 

discreteness of types of their behavior: their trajectories in phase space tend to 

converge into one of four possible configurations (―attractors‖) consisting of 

points, cyclic, torus-like, and ―strange‖ ones (see for example Hirsh, 2004). The 

discovery of randomness of trajectories inside a torus and strange attractors 

became a real sensation. This discovery, together with the fact of limitedness of the 

number of attractors, each with a different degree of randomness of trajectories in 

it, was the third great achievement of the
 
twentieth century in the cognition of 

Nature (the first two were the theory of relativity and quantum mechanics).  

      A vague feeling that this is not just another amazing and beautiful law of 

physics, but a manifestation of a more general law of Nature, was confirmed in 

studies of chemical, biological, and social systems: similar peculiarities of system 

dynamics were observed everywhere. In particular, the four types of systems are 

discerned in government and management: simple, complicated, complex, and 

chaotic ones (Snowden et al., 2007), straight in the order of the growing 

complexity of dealing with them (and therefore according to the increasing 

uncertainty in predicting their future behavior). 

       Certain methods were developed for overcoming specific difficulties 

connected with the first three types of complexity. These algorithms exploit 

possibilities of neutralizing the particular cause of a complexity: to compensate the 

lack of a certain resource (matter, energy, information, or time) needed for 

achieving the goal. Naturally, the different algorithms are tailored for overcoming 

various sources of difficulty (see, for example, Tarasenko, 2010): 

   • if the system is simple (i.e., all the necessary resources are available) then 

programmed control is used; 

   • if the system is complex (i.e., there is a lack of information about the system) 

then a trial-and-error algorithm is appropriate (note the specific narrowed use of 

the term complex in the case of insufficient knowledge of a controlled system); 

   • if a discrepancy between the desired and observed trajectories of a system 

behavior is small and may be compensated by a change in the parameter of a single 

system, then the algorithm of regulation (adjustment) is applied; 

   • if the discrepancy is so large that it cannot be eliminated by the regulation 

algorithm, then algorithms of restructuring, reorganization, and perestroika are 

applied;  

   • if a previously planned purpose proved to be contradictory to laws of nature 

(i.e. not feasible objectively), then changing the purpose to a supposedly 

achievable one is sometimes suitable;  

   • if the system is large (i.e., there is a lack of time for finding the optimal 

decision ―just in time‖ because of the large dimensions of the system that lead to 

delayed modeling) then various ways of speeding up the decision making are 

applicable (note again the specific sense of terms large and small, distinct from that 

in informal English); and 

  • if the final purpose is indefinite or unknown, but a hope still exists that there is a 

better state of the system, then the heuristic (revolutionary) and/or empirical 

(evolutional) approaches are used.  
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    However, the problem of coping with the complexity of chaotic (i.e., 

objectively, naturally random) systems remains quite different: we cannot change 

the laws of natural randomness of ongoing events. The only reasonable possibility 

for us is to adapt ourselves to stochastic events going on around us, like sailors do 

when caught in a storm, or pilots flying through turbulence, or surfers maneuvering 

along the steep slope of a wave. As Meadows (2008) put it, chaotic systems cannot 

be controlled, but it is possible ―to dance‖ with them along their ―pattern‖ of 

behavior. 

     Systems thinking suggests several methods for work with social systems 

entering into the chaotic phase of their life cycle. These methods are based on the 

creative use of information about the objective laws of development of Nature, 

such as fractalness, transitions between archetypes, self-organization, pattern 

recognition, and others. However, Jackson, who discussed in detail ten systems 

approaches to problem solving, warns about the much higher complexity of social 

systems than that of physical chaotic systems, which stems from the structure of 

social systems containing not only objective factors but additional subjective ones: 

human conscience and free will, divergence between stakeholders’ opinions, 

various proportions of empathy, tolerance, and hostility between them, the quality 

of communication, and others (Jackson, 2009). This requires managers to turn to a 

creative holism and to be very cautious in practical application of the results of 

formal theories.           

 

2. A CLASSIFICATION BASED ON THE TYPES OF SYSTEM MODELS 

       Purposeful influence on reality (e.g., the control over social systems) is based 

on information in the working model of a transformed system. Which of three 

basic models—the black box model (list of essential inputs and outputs), the model 

of composition (list of essential parts), and the model of structure (list of essential 

connections between parts)—or which combination of them is used as a working 

model in the particular case depends on the end pursued. Unfortunately, any model 

constructed may contain errors and mistakes, and this would create difficulties, 

various complexities in the work with the system.    

               And again, we face a variety of complexities; they need different approaches 

to tackle them. Let us consider a classification of complexities that may appear in 

each of the basic models. 

 

2.1. Multidimensionality as one of the origins of complexity 

 

      In some cases, the full information about all elements of a system is necessary 

for successfully solving a problem: a full list of all the components of the system is 

needed. However, there are systems consisting of a huge number of elements. 

Processing the whole amount of information becomes complicated if it must be 

completed in a limited period of time. This difficulty is called a ―curse of 

dimension‖ or a ―big data problem‖ in the informatics community; in management 

such systems are called large. Kolmogorov (2005) suggested measuring the 

complexity of a large system by the length of the computer program that describes 
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the system completely. A real-life example of a large system case was the 3–4-year 

delay in calculating by the GosPlan (Central Planning Commission of the USSR) 

of the annual inter-industrial balance between millions of produced and consumed 

products. This was one of the main causes of the poor efficiency of the totally 

centralized governance of the Soviet economy. 

        Thus, the essential characteristic of this aspect of complexity is the 

contradiction between the demand to do whole job no later than by a certain 

moment, and the fact that there is an acute shortage of time for finding the best 

solution through sorting it out from all possible solutions by means of sequential 

modeling each of them, simply because the sum of the time needed to model them 

all exceeds the critical time assigned for decision making. Such systems are called 

large. 

        This situation may be tackled in two ways. The first is a physical acceleration 

of modeling: to buy a faster computer, to hire several qualified experts for doing 

parts of the job simultaneously, and the like. But these require expending extra 

resources, and if there is a shortage of resources we are forced to use the second 

method of managing large systems: speeding up the decision making by switching 

from the time-consuming full optimization to the rapid finding of a satisfactory, 

acceptable solution. A not-optimal but timely decision is better than one that is the 

best but late. There are two ways to do this. One is to evaluate alternatives in turn 

precisely, up to the crucial moment, and choose the best one of those already 

explored, in spite of the fact that the optimal alternative may be among those not 

yet studied. Another way is to simplify the model, making a proximal evaluation of 

each variant easier (and quicker!). For example, if there are too many variables to 

be taken into account, let us omit some of them; if the dependence is nonlinear, let 

us approximate it by its linear proxy; if the process is random, let us use its 

momentums only. 

         The distinguishing feature of this type of complexity, – that is, whether the 

system is complex (large) or simple (small), – is accessibility of the modeling 

resources that are necessary for timely decision making. 

  

2.2. Complexity resulting from flaws in a model of structure 

     

         The characteristic (―emergent‖) property of a system is defined by the 

particular features of its structure. This is explicitly evident in analyzing archetypes 

of systems’ behavior (Senge et al., 1994): specific variants of a system’s dynamic 

behavior (―archetypes‖) are produced by interactions between enforcing and 

balancing feedback loops inside the system structure. A model of a system’s 

structure is a network of connections between parts of the system, what exactly is a 

concerted conjunction of black box models of all parts. And the danger of meeting 

unexpected difficulties when working with a real system stems from the possibility 

of errors creeping into the black box models of parts of the system. As is known, 

the four types of errors may happen in the process of building each black box 

model; and the probability of a mistake appearing in the model of a structure grows 

with the number of parts. Thus, the chances of avoiding complexities of this type 
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are based on our taking measures against making errors in modeling the inputs and 

outputs of each part of the system.  

 

2.2. Complexity from lack of information in a total model of a system 

    

    The working model of a system may be a combination of the models of its parts 

with its structure (connections between parts). If the working model does not 

contain enough information to achieve the goal, then the system becomes complex. 

Here again this term has a new, special, and relative meaning: it signifies not an 

attribute of a system but a relationship between the system and the person trying to 

manage it; this is complexity due to ignorance. The very same system may be 

complex for one person, and simple for another: it simply means that they use 

models of different adequacy in designing their decisions about the same system. 

     Since the cause of this type of complexity is the lack of needed information 

about the system, it is obvious how to tackle this difficulty: one needs to mine the 

missing information from any possible sources and add it to a model. But in many 

cases this information about the system may be obtained only from the system 

itself. This means experimentation with the system: each trial is a question to a 

system, ―What are you?‖ (actually, ―Will you produce on your output the desired 

response to my input influence, predicted by a model?‖), and its reaction to your 

input is its answer. This information must be taken into account in all subsequent 

actions with the system. Hence, the algorithm for managing that type of complex 

system is simple: it is sufficient to add into the previous model the knowledge 

received in each iterative cycle of interaction with the system. This algorithm is 

called a trial-and-error one. 

        Every cycle of this algorithm adds a portion of useful information to the 

working model of a system, thus making the model more adequate and the system 

less complex (more simple). This complexity of some systems is exhaustible: after 

a finite number of algorithm iterations, the system becomes simple (like the 

complexity of opening a cipher lock by trying all possible combinations one by 

one). But some systems are so complex that they never can be made simple (like 

Nature, the economy, the human brain, and others). So, the ignorance complexity 

of a problem situation can be measured by the number of trials and errors needed 

to obtain an acceptable solution. 

 

 

3. A CLASSIFICATION OF COMPLEXITIES BY THE TYPE OF 

UNCERTAINTY 

 

3.1. Uncertainty of randomness 

       

      Going from static models to dynamic ones demands the introduction of a new 

class of complexity, that of control over random processes. Note the difference 

between probabilistic and chaotic systems: tackling the latter is reduced to 

―dancing‖ with it, in attempts to recognize a pattern in ongoing events and adapt to 

it, trying to make a match with it in one’s own interests. In the probabilistic case, 
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on the contrary, a possibility exists of using not only information about the unique 

realization observed but also of using the more general information about the entire 

ensemble of all realizations from the random process. Such general information is 

condensed in the function describing distribution of probabilities over the whole 

set of realizations of a random event or a process, under some additional 

conditions, like that of stationarity (statistical stability of the distribution in time) 

and ergodicity (statistical similarity of all realizations) of the process.  

     The complexity of work with a random phenomenon is caused by the 

uncertainty of predicting its behavior. But some characteristics of the distribution 

function may be estimated, monitored, and sometimes controlled, such as 

parameters of location and/or scale, correlation and regression, or, as suggested by 

Shannon, a measure of distribution uncertainty, the entropy (Shannon, 1949). This 

knowledge of the random process may be used in managing it, because the 

measure of possibility to obtain a certain result by intentional intervention into a 

stream of random events (the probability of obtaining the desired result) depends 

on a number of conditions; and among them there is the subjective component of 

probability—the level of cognition of objective conditions. (Spectacular examples 

of controlling random social events with the help of knowledge are lies, deception, 

cheating, scams, and fraud.) 

       Different levels of knowing a probability distribution function dictate using 

different methods for extracting required information from the same data sample. 

Correspondingly, mathematical statistics (the theory of effective mining and 

processing of experimental data) has a few branches: 

1) classical (parametric) statistics, based on the assumption that the distribution 

function is fully known (up to a finite number of parameters); 

2) non-parametric statistics, which assumes that observations are coming from the 

existing but unknown distribution function;  

3) robust statistics, dealing with the cases when the probability distribution 

function is known approximately: when the real function lies in a vicinity of the 

given function; and 

4) semi-parametric statistics, which assumes that parametric form of the 

distribution function is known, but real values of parameters are random variables.  

      In managing the random system, the proper statistical methods (specific for 

each of four levels of a priori information) must be used for tackling the 

complexity.  

                                                                                                                                                                                                                                  

3.2. Complexity connected with “fuzzy” uncertainty 

      Uncertainty (which is a cause of a complexity) may be not only probabilistic. 

Very often several workers have to perform a certain job collectively. This means 

that each of them has his or her own model of the situation they are working on, 

but for the group work to be coherent, their individual models must contain enough 

of the same information in common, even in the case of verbal models. (The Bible 

describes the failure of the collective building of the Tower of Babel only because 

of the mismatch, the inconsistency of the builders’ languages.)  
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      If the common working language is a professional one (i.e., it provides 

sufficiently compatible meanings of phrases to all participants, like the languages 

of mathematics or engineering or medicine), then there is no difficulty 

(complexity) in communications. But when (as often happens in governance) they 

work using informal colloquial language, the semantic ambiguity of words 

expressing qualitative estimations, evaluations, and gradations creates difficulties 

in mutual understanding. The meaning of these words is diffuse, uncertain, and 

vaguely expressed in a weak qualitative (nominal or ordinal) measurement scale; 

and merely due to that, when different persons use the same grading term for the 

same evaluated item, they have in mind quite different meanings. Perhaps all 

misunderstandings, disagreements, and conflicts are rooted in these uncertainties in 

the sense of words of the natural language. 

       Mathematical tools for the description of such complexity were developed by 

Zadeh (1968, 1996). He suggested considering the words of uncertain meaning as 

―linguistic variables‖, with their values belonging to a fuzzy set. Each grading 

word is the label of a fuzzy class. The poly-semantic character of the linguistic 

variable means that a person believes that a qualitatively described entity x belongs 

to the given class with the certain (quantitative!) degree of confidence. This degree 

may take values between 0 (―certainly does not belong to‖) and 1 (―certainly 

belongs to‖) and represents value of the membership function µclass(х) 

characterizing belonging of x to the named class: 0   µclass(х)   1. Due to 

fuzziness, x may belong to several classes simultaneously, with corresponding 

degrees of confidence (and their sum equal to 1).     

       For example, a set of all pure numbers may be divided into three fuzzy classes: 

small, medium, and large numbers. And the two people would give overlapping 

but distinct membership functions to these classes. If they are working together, 

decisions about their joint efforts must be made by taking into account both 

opinions. For such needs certain operations were defined for certain combinations 

of given membership functions. For example, for logical disjunction (―or‖,  ), 

µ1 2
class (х) = max [ µ 1

class (х), µ 2
class (х)]; for the conjunction (―and‖,  ) it is 

defined as µ1  2
class (х) = min [ µ 1

class (х), µ 2
class (х)], etc. Fuzzy logic allows 

compiling common managerial decisions from differing individual fuzzy 

judgments. It is a tool for coping with specific subjective complexity. 

 

 

CONCLUSION 

     

       In conclusion, it should not be forgotten that classifications are (as are all 

models) mapping a reality only from a chosen particular point of view and 

approximately (with a satisfactory finite accuracy). The reality always differs from 

our perception of it. This is why complexities lying in wait for a person interacting 

with reality may disagree with indications of any class from our classifications.  

     Sometimes a concrete difficulty is a joint effect of several types of complexity. 

For example, probabilistic uncertainty may be combined with a fuzzy one (Zadeh, 

1968), or the objective and subjective uncertainties may manifest themselves 
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simultaneously (Tarasenko, 1976). In such cases one usually tries to construct a 

hybrid algorithm of those specific to particular types of complexity; and this is not 

an easy task.  

     However, real-life practice often possesses a type of complexity that is not 

covered by our formalized models. In systems thinking language, those problems 

were termed soft, chaotic, and wicked. Although some of their sub-problems may 

be formalized (for example, by methods of operations research), for some others 

certain heuristic approaches are suggested (soft methodology, brainstorming, 

synectics, project thinking, leverage points, pattern recognition, seven hats, 

foresight, etc.); nevertheless, their full solution lies beyond rationality. A conscious 

use of the unconscious resources of our brain (the subconscious, intuition, 

abduction) has appeared recently in managerial science and practice (Jackson, 

2009; Gladwell, 2005; Stewart, 2002; Bloom, 2010). In attempts to satisfy the 

requirements of Ashby's law of requisite variety, we are trying to confront the 

complexity of Nature with the complexity of our brain. In one respect this is 

already achieved: calculations show that the number of possible combinations of 

states of all neurons in the brain is larger than the number of elementary particles 

in the Universe. But it is unknown how strong brain capacity is in sorting out these 

combinations.  
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