
 

 

   

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING 

 

Reverse Address Resolution Protocol (RARP) 
 Mr. Rahul Sehrawat 

Department of Information Technology 

Dronacharya College of Engineering , Gurgaon, Haryana 

rsehrawat75@gmail.com 

Mr. Pankaj Gupta 

Department of Information Technology 

Dronacharya College of Engineering , Gurgaon, Haryana 

im4upankaj@gmail.com 

Mr. Ravishu Yadav 

Department of Information Technology 

Dronacharya College of Engineering , Gurgaon, Haryana 

yadavravishu@gmail.com 

 

Abstract-- The Reverse Address Resolution Protocol (RARP) is an obsolete computer networking protocol used by a client 

computer to request its Internet Protocol (IPv4) address from a computer network, when all it has available is its Link Layer or 

hardware address, such as a MAC address. The client broadcasts the request, and does not need prior knowledge of the network 

topology or the identities of servers capable of fulfilling its request. RARP is described in Internet Engineering Task 

Force (IETF) publication RFC 903. It has been rendered obsolete by the Bootstrap Protocol (BOOTP) and the modern Dynamic 

Host Configuration Protocol (DHCP), which both support a much greater feature set than RARP. This research paper gives a 

brief introduction about Reverse Address Resolution Protocol (RARP) , Timing RARP Transactions ,Primary And Backup 

RARP Servers. 

Introduction  

We now know that physical network addresses are both 

low-level and hardware dependent, and we understand that 

each machine using TCP/IP is assigned one or more 32-bit 

IP addresses that are independent of the machine's 

hardware addresses. Application programs always use the 

IP address when specifying a destination. Because hosts 

and routers must use a physical address to transmit a 

datagram across an underlying hardware network; they rely 

on address resolution schemes like ARP to map between an 

IP address and an equivalent hardware address. Usually, a 

computer's IP address is kept on its secondary storage, 

where the operating system finds it at startup. The question 

arises, "How does a machine without a permanently 

attached disk determine its IP address?" The problem is 

critical for workstations that store files on a remote server 

or for small embedded systems because such machines 

need an IP address before they can use standard TCP m file 

transfer protocols to obtain their initial boot image. This 

paper explores the question of how to obtain an IP address, 

and describes a low-level protocol that such machines can 

use before they boot from a remote file server. This extends 

the discussion of bootstrapping, and considers popular 

alternatives to the protocol presented here. Because an 

operating system image that has a specific IP address 

bound into the code cannot be used on multiple computers, 

designers usually try to avoid compiling a machine's IP 

address in the operating system code or support software. 

In particular, the bootstrap code often found in Read Only 

Memory (ROM) is usually built so the same image can run 

on many machines. When such code starts execution, it 

uses the network to contact a server and obtain the 

computer's IP address. The bootstrap procedure sounds 

paradoxical: a machine communicates with a re- mote 

server to obtain an address needed for communication. The 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-5 | May, 2015 | Paper-4 23 

http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/Link_Layer
http://en.wikipedia.org/wiki/Media_Access_Control
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://en.wikipedia.org/wiki/Internet_Engineering_Task_Force
http://tools.ietf.org/html/rfc903
http://en.wikipedia.org/wiki/Bootstrap_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol


 

 

   

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING 

 

paradox is only imagined, however, because the machine 

does know how to communicate. It can use its physical 

address to communicate over a single network. Thus, the 

machine must resort to physical network addressing 

temporarily in the same way that operating systems use 

physical memory addressing to set up page tables for 

virtual addressing. Once a machine knows its IP address, it 

can communicate across an internet. The idea behind 

finding an IP address is simple: a machine that needs to 

know its address sends a request to a server? on another 

machine, and waits until the server sends a response. We 

assume the server has access to a disk where it keeps a 

database of internet addresses. In the request, the machine 

that needs to know its internet address must uniquely 

identify itself, so the server can look up the correct internet 

address and send a reply. Both the machine that issues the 

request and the server that responds use physical network 

addresses during their brief communication. How does the 

requester know the physical address of a server? Usually, it 

does not - it simply broadcasts the request to all machines 

on the local network. One or more servers respond. 

Whenever a machine broadcasts a request for an address, it 

must uniquely identify itself. What information can be 

included in its request that will uniquely identify the 

machine? Any unique hardware identification suffices (e.g., 

the CPU serial number). However, the identification should 

be something that an executing program can obtain easily. 

Unfortunately, the length or format of CPU-specific 

information may vary among processor models, and we 

would like to devise a server that accepts requests from all 

machines on the physical network using a single format. 

Furthermore, engineers who design bootstrap code attempt 

to create a single software image that can execute on an 

arbitrary processor, and each processor model may have a 

slightly different set of instructions for obtaining a serial 

number.  

Reverse Address Resolution Protocol (RARP)  

The designers of TCP/IP protocols realized that there is 

another piece of uniquely identifying information readily 

available, namely, the machine's physical network ad- 

dress. Using the physical address as a unique identification 

has two advantages. Because a host obtains its physical 

addresses from the network interface hardware, such 

addresses are always available and do not have to be bound 

into the bootstrap code. Because the identifying 

information depends on the network and not on the CPU 

vendor or model all machines on a given network will 

supply uniform unique identifiers. Thus, the problem 

becomes the reverse of address resolution: given a physical 

network address, devise a scheme that will allow a server to 

map it into an internet address. The TCP n P protocol that 

allows a computer to obtain its IP address from a server is 

known as the Reverse Address Resolution Protocol 

(RARP). In practice, the RARP message sent to request an 

internet address is a little more general than what we have 

outlined above: it allows a machine to request the IP 

address of a third party as easily as its own. It also allows 

for multiple physical net- work types. Like an ARP 

message, a RARP message is sent from one machine to 

another en- capsulated in the data portion of a network 

frame. For example, an Ethernet frame carrying a RARP 

request has the usual preamble, Ethernet source and 

destination ad- dresses, and packet type fields in front of 

the frame. The frame type contains the value 8035,, to 

identify the contents of the frame as a RARP message. The 

data portion of the frame contains the 28-octet RARP 

message. Figure 1.1 illustrates how a host uses RARP. The 

sender broadcasts a RARP re- quest that specifies itself as 

both the sender and target machine, and supplies its 

physical network address in the target hardware address 

field. All computers on the network receive the request, but 

only those authorized to supply the RARP service process 

the request and send a reply; such computers are known 

informally as RARP servers. For RARP to succeed, the 

network must contain at least one RARP server.   

 

 

 

Fig1.1 (a) Machine A broadcasts a RARP request 

specifying itself as a target, and (b) those machines 

authorized to supply the RAW service (C and D) reply 

directly to A. 

Servers answer requests by filling in the target protocol 

address field, changing the message type from request to 

reply, and sending the reply back directly to the machine 

making the request. The original machine receives replies 

from all RARP servers, even though only the first is 

needed. Keep in mind that all communication between the 

computer seeking its IP address and the server supplying it 

must be carried out using only the physical network. 

Furthermore, the protocol allows a host to ask about an 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-5 | May, 2015 | Paper-4 24 



 

 

   

 JOURNAL OF COMPUTER SCIENCE AND ENGINEERING 

 

arbitrary target. Thus, the sender supplies its hardware 

address separate from the target hardware address, and the 

server is careful to send the reply to the sender's hardware 

address. On an Ethernet, having a field for the sender's 

hardware address may seem redundant because the 

information is also contained in the Ethernet frame header. 

However, not all Ethernet hardware provides the operating 

system with access to the physical frame header.  

Timing RARP Transactions  

Like any communication on a best-effort delivery network, 

RARP requests and responses are susceptible to loss 

(including discard by the network interface if the CRC 

indicates that the frame was corrupted). Because RARP 

uses the physical network directly, no other protocol 

software will time the response or retransmit the request; 

RARP software must handle these tasks. In general, RARP 

is used only on local area networks like the Ethernet, where 

the probability of failure is low. If a network has only one 

RARP server, however, that machine may not be able to 

handle the load, so packets may be dropped. Some 

computers that rely on RARP to boot choose to retry 

indefinitely until they receive a response. Other 

implementations announce failure after only a few tries to 

avoid flooding the network with unnecessary broadcast 

traffic (e.g., in case the server is unavailable). On an 

Ethernet, network failure is less likely than server overload. 

Making RARP software retransmit quickly may have the 

unwanted effect of flooding a congested server with more 

traffic. Using a large delay ensures that servers have ample 

time to satisfy the request and return an answer.  

Primary and Backup RARP Servers  

The chief advantage of having several computers function 

as RARP servers is that it makes the system more reliable. 

If one server is down or too heavily loaded to respond, 

another answers the request. Thus, it is highly likely that 

the service will be available. The chief disadvantage of 

using many servers is that when a machine broad- casts a 

RARP request, the network becomes overloaded because 

all servers attempt to respond. On an Ethernet, for example, 

using multiple RARP servers makes the probability of 

collision high. How can the RAW service be arranged to 

keep it available and reliable without incurring the cost of 

multiple, simultaneous replies? There are at least two 

possibilities, and they both involve delaying responses. In 

the first solution, each machine that makes RARP requests 

is assigned a primary server. Under normal circumstances, 

only the machine's primary server responds to its RARP 

request. All non-primary servers receive the request but 

merely record its arrival time. If the primary server is 

unavailable the original machine will timeout waiting for a 

response and then rebroadcast the re- quest. Whenever a 

non-primary server receives a second copy of a RARP 

request within a short time of the fist, it responds. The 

second solution uses a similar scheme but attempts to avoid 

having all non-primary servers transmit responses 

simultaneously. Each non-primary machine that receives a 

request computes a random delay and then sends a 

response. Under normal circumstances, the primary server 

responds immediately and successive responses are 

delayed, so there is low probability that several responses 

arrive at the same time. When the primary server is 

unavailable, the requesting machine experiences a small de- 

lay before receiving a reply. By choosing delays carefully, 

the designer can ensure that requesting machines do not 

rebroadcast before they receive an answer.  

Conclusion 

At system startup, a computer that does not have permanent 

storage must contact a server to find its IP address before it 

can communicate using TCP/IP. This chapter examined the 

RARP protocol that uses physical network addressing to 

obtain the machine's internet address. The RARP 

mechanism supplies the target machine's physical hardware 

address to uniquely identify the processor and broadcasts 

the RARP request. Servers on the network receive the 

message, look up the mapping in a table (presumably from 

secondary storage), and reply to the sender. Once a 

machine obtains its IP address, it stores the address in 

memory and does not use RARP again until it reboots. 

REFERENCES  

[1]Finlayson, et. al. [RFC 9031] [2] internetworking with 

TCP/IP vol1 Douglas E. Comer [89-93][3] TCP/IP The 

protocols W. Richard Stevens.[4] Dr. K. Twidle 

 

 

 

IJRDO - Journal of Computer Science and Engineering ISSN: 2456-1843

Volume-1 | Issue-5 | May, 2015 | Paper-4 25 




